Volume 6 Issue 3
Jun.  2013
Turn off MathJax
Article Contents
PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283
Citation: PAN Xue-cong, YAO Ze-han, XU Xin-long, WANG Li. Fabrication, design and application of THz metamaterials[J]. Chinese Optics, 2013, 6(3): 283-296. doi: 10.3788/CO.20130603.0283

Fabrication, design and application of THz metamaterials

doi: 10.3788/CO.20130603.0283
  • Received Date: 17 Feb 2013
  • Rev Recd Date: 15 Apr 2013
  • Publish Date: 10 Jun 2013
  • In this paper, the electromagnetic responses and potential applications of THz metamaterials are reviewed through the focus on fabrication, unit structure design, and material selection, respectively. It describes different kinds of fabrication technologies for obtaining metamaterials with special electromagnetic responses such as magnetic resonance and reconfigurable tunability, which is helpful for further understanding of electromagnetic resonances in metamaterials. The paper analyzes the electromagnetic response characteristics in detail and points out that the unit structure design can be used to obtain desired electromagnetic characteristics, such as anisotropy, bianisotropy, polarization modulation, multiband response, broadband response, asymmetric transmission, optical activity, and perfect absorption, etc. The dependence of electromagnetic responses upon surrounding dielectrics can be used not only to control resonant frequency by a proper substrate selection, but also for sensing applications. Furthermore, the introduction of functional materials with controllable dielectric properties by external optical field, electrical field, magnetic field and temperature has the potential to achieve tunable metamaterials, which is highly desirable for THz functional devices. Finally, the opportunities and challenges for further developments of THz metamaterials are briefly introduced.

     

  • loading
  • [1] CAI W S,SHALAEV V M. Optical Metamaterials:Fundamentals and Applications[M]. New York:Springer-Verlag,2010. [2] LEE Y S. Principles of Terahertz Science and Technology[M]. New York:Springer-Verlag,2009. [3] 叶全意,杨春. 光子学太赫兹源研究进展[J]. 中国光学,2012,5(1):1-11. YE Q Y,YANG CH. Recent progress in THz sources based on photonics methods[J]. Chinese Optics,2012,5(1):1-11. (in Chinese) [4] 张会,张卫宇,徐旺,等. THz波段光子晶体带隙影响因素研究[J]. 发光学报,2012,33(8): 883-887. ZHANG H,ZHANG W Y,XU W,et al.. Study on the influencing factors of photonic crystal's band gaps in THz waveband[J]. Chinese J. Luminescence,2012,33(8):883-887.(in Chinese) [5] 罗志伟,古新安,朱韦臻,等. 掺硫硒化镓晶体在太赫兹波段的光学特性[J]. 光学 精密工程,2011,19(2):354-359.LUO ZH W,GU X A,ZHU W CH,et al.. Optical properties of GaSe∶S crystals in terahertz frequency range[J]. Opt. Precision Eng.,2011,19(2):354-359. (in Chinese) [6] PENDRY J B,HOLDEN A J,STEWART W J,et al.. Extremely low frequency plasmons in metallic mesostructures[J]. Phys. Rev. Lett.,1996,76(25):4773-4776. [7] PENDRY J B,HOLDEN A J,ROBBINS D J,et al.. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Trans. Microw. Theory Tech.,1999,47(11):2075-2084. [8] XIA X X,SUN Y M,YANG H F,et al.. The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region[J]. J. Appl. Phys.,2008,104(3):033505. [9] CHIAM S Y,SINGH R,ZHANG W L,et al.. Controlling metamaterial resonances via dielectric and aspect ratio effects[J]. Appl. Phys. Lett.,2010,97(19):191906. [10] SINGH R,AZAD A K,O'HARA J F,et al.. Effect of metal permittivity on resonant properties of terahertz metamaterials[J]. Opt. Lett.,2008,33(13): 1506-1508. [11] SINGH R,SMIRNOVA E,TAYLOR A J,et al.. Optically thin terahertz metamaterials[J]. Opt. Express,2008,16(9):6537-6543. [12] SUN Y M,XIA X X,FENG H,et al.. Modulated terahertz responses of split ring resonators by nanometer thick liquid layers[J]. Appl. Phys. Lett.,2008,92(22):221101. [13] TAO H,STRIKWERDA A C,LIU M K,et al.. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Appl. Phys. Lett.,2010,97(26):261909. [14] WITHAYACHUMNANKUL W,LIN H,SERITA K,et al.. Sub-diffraction thin-film sensing with planar terahertz metamaterials[J]. Opt. Express,2012,20(3):3345-3352. [15] WU X J,QUAN B G,PAN X C,et al.. Alkanethiol-functionalized terahertz metamaterial as label-free,highly-sensitive and specific biosensor[J]. Biosens. Bioelectron.,2013,42:626-631. [16] PERALTA X G,SMIRNOVA E I,AZAD A K,et al.. Metamaterials for THz polarimetric devices[J]. Opt. Express,2009,17(2):773-783. [17] PADILLA W J,TAYLOR A J,HIGHSTRETE C,et al.. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Phys. Rev. Lett.,2006,96(10):107401. [18] GU J Q,SINGH R,AZAD A K,et al.. An active hybrid plasmonic metamaterial[J]. Opt. Mater. Express,2012,2(1):31-37. [19] CHATZAKIS I,LUO L,WANG J,et al.. Reversible modulation and ultrafast dynamics of terahertz resonances in strongly photoexcited metamaterials[J]. Phys. Rev. B,2012,86(12):125110. [20] SHEN X P,CUI T J. Photoexcited broadband redshift switch and strength modulation of terahertz metamaterial absorber[J]. J. Opt.,2012,14(11):114012. [21] KANDA N,KONISHI K,KUWATA-GONOKAMI M. Dynamics of photo-induced terahertz optical activity in metal chiral gratings[J]. Opt. Lett.,2012,37(17):3510-3512. [22] GU J Q,SINGH R,LIU X J,et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat. Commun.,2012,3:1151. [23] CHEN H T,PADILLA W J,ZIDE J M O,et al.. Active terahertz metamaterial devices[J]. Nature,2006,444(7119):597-600. [24] CHAN W L,CHEN H T,TAYLOR A J,et al.. A spatial light modulator for terahertz beams[J]. Appl. Phys. Lett.,2009,94(21):213511. [25] WU J B,JIN B B,XUE Y H,et al.. Tuning of superconducting niobium nitride terahertz metamaterials[J]. Opt. Express,2011,19(13):12021-12026. [26] LIU M,HWANG H Y,TAO H,et al.. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature,2012,487(7407):345-348. [27] GOLDFLAM M D,DRISCOLL T,CHAPLER B,et al.. Reconfigurable gradient index using VO2 memory metamaterials[J]. Appl. Phys. Lett.,2011,99(4):044103. [28] TAO H,STRIKWERDA A,FAN K,et al.. Reconfigurable Terahertz metamaterials[J]. Phys. Rev. Lett.,2009,103(14):147401. [29] NěMEC H,KU?EL P,KADLEC F,et al.. Tunable terahertz metamaterials with negative permeability[J]. Phys. Rev. B,2009,79(24):241108. [30] SINGH R,AZAD A K,JIA Q X,et al.. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Opt. Lett.,2011,36(7):1230-1232. [31] YUAN Y,BINGHAM C,TYLER T,et al.. Dual-band planar electric metamaterial in the terahertz regime[J]. Opt. Express,2008,16(13):9746-9752. [32] ZHANG Y X,QIAO S,HUANG W,et al.. Asymmetric single-particle triple-resonant metamaterial in terahertz band[J]. Appl. Phys. Lett.,2011,99(7):073111. [33] MA Y,CHEN Q,KHALID A,et al.. Terahertz dual-band resonator on silicon[J]. Opt. Lett.,2010,35(4):469-471. [34] HUSSAIN S,MIN WOO J,JANG J-H. Dual-band terahertz metamaterials based on nested split ring resonators[J]. Appl. Phys. Lett.,2012,101(9):091103. [35] CHOWDHURY D R,SINGH R,REITEN M,et al.. A broadband planar terahertz metamaterial with nested structure[J]. Opt. Express,2011,19(17):15817-15823. [36] HUANG L,CHOWDHURY D R,RAMANI S,et al.. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band[J]. Opt. Lett.,2012,37(2):154-156. [37] HAN N R,CHEN Z C,LIM C S,et al.. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates[J]. Opt. Express,2011,19(8):6990-6998. [38] HU C,LI X,FENG Q,et al.. Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency[J]. J. Appl. Phys.,2010,108(5):053103. [39] GRANT J,MA Y,SAHA S,et al.. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Opt. Lett.,2011,36(17):3476-3478. [40] SHEN X,YANG Y,ZANG Y,et al.. Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation[J]. Appl. Phys. Lett.,2012,101(15):154102. [41] SINGH R,ROCKSTUHL C,LEDERER F,et al.. Coupling between a dark and a bright eigenmode in a terahertz metamaterial[J]. Phys. Rev. B,2009,79(8):085111. [42] CHIAM S-Y,SINGH R,ROCKSTUHL C,et al.. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Phys. Rev. B,2009,80(15):153103. [43] LIU X J,GU J Q,SINGH R,et al.. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode[J]. Appl. Phys. Lett.,2012,100(13):131101. [44] LI Z Y,MA Y F,HUANG R,et al.. Manipulating the plasmon-induced transparency in terahertz metamaterials[J]. Opt. Express,2011,19(9):8912-8919. [45] ZHU W M,LIU A Q,BOUROUINA T,et al.. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy[J]. Nat. Commun.,2012,3:1274. [46] LIU A Q,ZHU W M,TSAI D P,et al.. Micromachined tunable metamaterials:a review[J]. J. Opt.,2012,14(11):114009. [47] FU Y H,LIU A Q,ZHU W M,et al.. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Adv. Funct. Mater.,2011,21(18):3589-3594. [48] 方安乐,戴小玉,凌晓辉,等. 太赫兹超常材料及应用[J]. 激光与光电子学进展,2010,47(5):051601. FANG A L,DAI X Y,LING X H,et al.. Metamaterials at terahertz and their applications[J]. Laser & Optoelectronics Progress,2010,47(5):051601. (in Chinese) [49] 丁佩,梁二军. 太赫兹波段电磁超介质的应用及研究进展[J]. 激光与光电子学进展,2011,48(7):071602. DING P,LIANG E J. Research progress of metamaterials for terahertz applications[J]. Laser & Optoelectronics Progress,2011,48(7):071602. (in Chinese) [50] 何明霞,李净延,刘冠林. 太赫兹可控功能器件的研究进展[J]. 电子测量与仪器学报,2012,26(7):567-576. HE M X,LI J Y,LIU G L. Progress of terahertz active control functional devices[J]. J. Electronic Measurement and Instrument,2012,26(7):567-576. (in Chinese) [51] TAO H,PADILLA W J,ZHANG X,et al.. Recent progress in electromagnetic metamaterial devices for Terahertz applications[J]. IEEE J. Sel. Top. Quant,2011,17(1):92-101. [52] WITHAYACHUMNANKUL W,ABBOTT D. Metamaterials in the Terahertz regime[J]. IEEE Photonics J.,2009,1(2):99-118. [53] CHIAM S-Y,SINGH R,GU J,et al.. Increased frequency shifts in high aspect ratio terahertz split ring resonators[J]. Appl. Phys. Lett.,2009,94(6):064102. [54] WALTHER M,ORTNER A,MEIER H,et al.. Terahertz metamaterials fabricated by inkjet printing[J]. Appl. Phys. Lett.,2009,95(25):251107. [55] KIM H,MELINGER J S,KHACHATRIAN A,et al.. Fabrication of terahertz metamaterials by laser printing[J]. Opt. Lett.,2010,35(23):4039-4041. [56] MIYAMARU F,KUBODA S,TAIMA K,et al.. Three-dimensional bulk metamaterials operating in the terahertz range[J]. Appl. Phys. Lett.,2010,96(8):081105. [57] ZAICHUN C,RAHMANI M,YANDONG G,et al.. Realization of variable three-dimensional Terahertz metamaterial tubes for passive resonance tunability[J]. Adv. Mater.,2012,24(23):OP143-OP147. [58] FAN K B,STRIKWERDA A C,TAO H,et al.. Stand-up magnetic metamaterials at terahertz frequencies[J]. Opt. Express,2011,19(13):12619-12627. [59] ZHANG S,ZHOU J F,PARK Y S,et al.. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nat. Commun.,2012,3:942. [60] ARISMAR CERQUEIRA S. Recent progress and novel applications of photonic crystal fibers[J]. Rep. Prog. Phys.,2010,73(2):024401. [61] TUNIZ A,POPE B,WANG A,et al.. Spatial dispersion in three-dimensional drawn magnetic metamaterials[J]. Opt. Express,2012,20(11):11924-11935. [62] OZBEY B,AKTAS O. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers[J]. Opt. Express,2011,19(7):5741-5752. [63] KAFESAKI M,SHEN N H,TZORTZAKIS S,et al.. Optically switchable and tunable terahertz metamaterials through photoconductivity[J]. J. Opt.,2012,14(11):114008. [64] PADILLA W,ARONSSON M,HIGHSTRETE C,et al.. Electrically resonant terahertz metamaterials:theoretical and experimental investigations[J]. Phys. Rev. B,2007,75(4):041102. [65] YEN T J. Terahertz magnetic response from artificial materials[J]. Science,2004,303(5663):1494-1496. [66] MARQUES R,MEDINA F,RAFII-EL-IDRISSI R. Role of bianisotropy in negative permeability and left-handed metamaterials[J]. Phys. Rev. B,2002,65(14):144440. [67] XU X L,QUAN B G,GU C Z,et al.. Bianisotropic response of microfabricated metamaterials in the terahertz region[J]. J. Opt. Soc. Am. B,2006,23(6):1174-1180. [68] DRISCOLL T,ANDREEV G O,BASOV D N,et al.. Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy[J]. Appl. Phys. Lett.,2007,90(9):092508. [69] ZHU Y H,VEGESNA S,KURYATKOV V,et al.. Terahertz bandpass filters using double-stacked metamaterial layers[J]. Opt. Lett.,2012,37(3):296-298. [70] REITEN M T,ROY CHOWDHURY D,ZHOU J,et al.. Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials[J]. Appl. Phys. Lett.,2011,98(13):131105. [71] HUANG C,FENG Y J,ZHAO J M,et al.. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures[J]. Phys. Rev. B,2012,85(19):195131. [72] KENANAKIS G,ZHAO R,STAVRINIDIS A,et al.. Flexible chiral metamaterials in the terahertz regime:a comparative study of various designs[J]. Opt. Mater. Express,2012,2(12):1702-1712. [73] ZHAO Y,BELKIN M A,AL A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers[J]. Nat. Commun.,2012,3:870. [74] MENZEL C,ROCKSTUHL C,LEDERER F. Advanced Jones calculus for the classification of periodic metamaterials[J]. Phys. Rev. A,2010,82(5):053811. [75] SINGH R,PLUM E,MENZEL C,et al.. Terahertz metamaterial with asymmetric transmission[J]. Phys. Rev. B,2009,80(15):153104. [76] SINGH R,PLUM E,ZHANG W L,et al.. Highly tunable optical activity in planar achiral terahertz metamaterials [J]. Opt. Express,2010,18(13): 13425-13430. [77] WOO J H,CHOI E,KANG B,et al.. Anisotropic change in THz resonance of planar metamaterials by liquid crystal and carbon nanotube[J]. Opt. Express,2012,20(14):15440-15451. [78] REINHARD B,SCHMITT K M,WOLLRAB V,et al.. Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range[J]. Appl. Phys. Lett.,2012,100(22):221101. [79] VENDIK O G,ODIT M A,KHOLODNYAK D V,et al.. Tunable metamaterials for controlling THz radiation[J]. IEEE Transactions on Terahertz Science and Technology,2012,2(5):538-549. [80] ZHOU Q L,SHI Y L,WANG A H,et al.. Ultrafast optical modulation of terahertz metamaterials[J]. J. Opt.,2011,13(12):125102. [81] LI W,KUANG D F,FAN F,et al.. Subwavelength B-shaped metallic hole array terahertz filter with InSb bar as thermally tunable structure[J]. Appl. Optics.,2012,51(29):7098-7102. [82] ZHELUDEV N I,KIVSHAR Y S. From metamaterials to metadevices[J]. Nat. Mater.,2012,11(11):917-924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4226) PDF downloads(1137) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return