Volume 6 Issue 2
Apr.  2013
Turn off MathJax
Article Contents
REN Yu, CAI Hong-xing, TAN Jian-yao, TAN Yong, ZHANG Xi-he, ZHENG Feng, MA Wen-lian. Imaging drift of acousto-optic modulator spectral camera[J]. Chinese Optics, 2013, 6(2): 179-186. doi: 10.3788/CO.20130602.0179
Citation: REN Yu, CAI Hong-xing, TAN Jian-yao, TAN Yong, ZHANG Xi-he, ZHENG Feng, MA Wen-lian. Imaging drift of acousto-optic modulator spectral camera[J]. Chinese Optics, 2013, 6(2): 179-186. doi: 10.3788/CO.20130602.0179

Imaging drift of acousto-optic modulator spectral camera

doi: 10.3788/CO.20130602.0179
More Information
  • Corresponding author: CAI Hong-xing
  • Received Date: 11 Nov 2012
  • Rev Recd Date: 13 Jan 2013
  • Publish Date: 10 Apr 2013
  • The image drift phenomenon caused by the dispersion of an acousto-optic crystal is researched when the spectral camera is imaging based on acousto-optic tunable filtering mechanism. The image drift caused by the crystal outside diffraction angle is calculated theoretically and measured experimentally by the dispersion compensation and the image displacement compensation methods when a Acousto-optic Tunable Filter(AOTF) is in the visible band of 488-644 nm, and the experiments are also optimized and analyzed. Using the dispersion compensation method and in the incident light wavelength of 488-644 nm, when we adjust the incident subject as a parallel light and add a wedge of 0.6 in the crystal exit surface, the change of the crystal outside diffraction angle can be reduced from 0.066 50 to 0.004 2, and the image drift is reduced from 162.1 m to 10.9 m. Using the image displacement compensation method without adding the optical wedge, when the incident light wavelength is in 488-644 nm, the image level drift can be reduced from 468 m to 0.658 m within a pixel drift. Experimental results show that the effect of the imaging can be neglected, and the two methods can improve the imaging resolution of the AOTF based on mechanism of the spectral camera.

     

  • loading
  • [1] BRILLOUIN L,DE PHYSIQUE A. Diffusion de la lumiere et des rayons X par un corps transparent homogene-influence de l'agitation thermique[J]. Annales de Physique,1922,17:88-122. [2] DEBYE P,SEARS F W. On the scattering of light by supersonic waves[J]. Proceedings of the National Academy of Science,1932,18(6):409-414. [3] LUCAS P M R,BIQUARD P. Optical properties of solid and liquid medias subjected to high-frequency elastic vibrations[J]. Le Journal de Physique et le Radium,1932,549 (3):464-477. [4] KLEIN W R,COOK B D. Analysis of Kapitza-Dirac diffraction patterns beyond the Raman-Nath regime[J]. Optics Express,2009,(17):19173-1180. [5] ZENG S,BI K,XUE S,et al.. Acousto-optic modulator system for femtosecond laser pulses[J]. Rev Sci Instrum,2007,78(1):015103. [6] 杨薇,刘迎,肖立峰,等.声光可调谐环形腔掺铒光纤激光器[J].物理学报,2010,59(2):1030-1035. YANG W,LIU Y,XIAO L F,et al.. Acousto-optic wavelength-tunable erbium-dopedfiber ringlaser[J]. Acta Phys Sin,2010,59(2):1030-1035.(in Chinese) [7] DIXON R W. Acoustic diffraction of light in anisotropic media[J]. IEEE J. Quantum Electronics,1967,3(2):85-93. [8] TAKAHASHI K,TANAKA K,HASHIMOTO N,et al.. Widely(132 nm) wavelength tunable laser using semiconductor optical amplifier and acousto-optic tunable filter[J]. Electronics Lett.,2004,40(19):1187-1188. [9] HARRIS S E,WALLACE R W. Acousto-optic tunable filter[J]. J. Optical Society America,1969,59(6):744-747. [10] CHANG I C. Phosphorescence imaging system using an acousto-optic filter-based charge coupled device[J]. SPIE,1997,351:229-239. [11] GLENAR D A,HILLMAN J J,SAIF B,et al.. Acousto-optic imaging spectropolarimetry for remote sensing[J]. Appl. Opt.,1994,33(31):7412-7424. [12] GLENAR D A,HILLMAN J J. Acousto-optic imaging spectropolarimetry for remote sensing[J]. Appl. Optic,1994,33(31):7412-7424. [13] LV X,ZHAN C,ZENG S,et al.. Construction of multiphoton laser scanning microscope based on dual-axis acousto-optic deflector[J]. Rev Sci. Instrum,2006,77(4):046101. [14] 赵慧洁,程宣,张颖.用于火星探测的声光可调谐滤波器成像光谱仪[J].光学 精密工程,2012,20(9):945-1952. ZHAO H J,CHENG X,ZHANG Y. Design of acousto-optic imaging spectrometer for mars exploration[J]. Opt. Precision Eng.,2012,20(9):945-1952.(in Chinese) [15] 张建英,谢文明,曾志平,等.光声成像技术的最新进展[J].中国光学,2011,4(2):111-117. ZHANG J Y,XIE W M,ZENG ZH P,et al.. Recent progress in photoacoustic imaging technology[J]. Chinese Optics,2011,4(2):111-117.(in Chinese) [16] 吕晓华,占成,张红民,等.随机扫描多光子荧光显微成像系统[J].光学学报,2006,26(11):1823-1828. LV X H,ZHAN CH,ZHANG H M,et al.. Construction of random-access scanning multiphoton fluorescence microscope system[J]. Acta Optica Sinica,2006,26(11):1823-1828.(in Chinese) [17] NGOI B K A,VENKATAKRISHNAN K,TAN B,et al.. Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed lasermicromachining[J]. Opt Express,2001,9(4):200-206. [18] BELLON V,VIGNEAU J L,SVILA F. Infrared and near-infrared technology for the food industry and agricultural uses:on-line applications[J]. Food Control,1994,5(1):21-27. [19] KHOSHNEVISAN M,SOVERO E. Development of a cryogenic infarred acousto-optic tunable spectral filter[J]. SPIE,1980,245:63-68. [20] 任玉,蔡红星,谭勇,等.基于TeO2旋光特性对声光可调滤波器消色散的设计[J].中国科学,2011,41(8):917-923. REN Y,CAI H X,TAN Y,et al.. Design of the acousto-optic tunable filter base on the rotatory property of TeO2[J]. Scientia Sinica,2011,41(8):917-923.(in Chinese) [21] 任玉.基于布拉格调制下的成像光谱仪的分光部分研究[D].长春:长春理工大学,2011. REN Y. Study on dispersion parts by bragg modulating in imaging spectrometer[D]. Changchun:Changchun University of science and Technology,2011.(in Chinese) [22] 德荣,吕晓华,吴萍,等.声光偏转器扫描飞秒激光的时间色散补偿[J].物理学报,2006,55(9):4729-4733. DE R,LV X H,WU P,et al.. Compensation of temporal dispersion for acousto-optical deflector scanning femtosecond laser[J]. Acta Phys Sin,2006,55(9):4729-4733.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3244) PDF downloads(677) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return