Volume 5 Issue 6
Dec.  2012
Turn off MathJax
Article Contents
LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
Citation: LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566

Development of spectral calibration technologies with ultra-high resolutions

doi: 10.3788/CO.20120506.0566
  • Received Date: 16 Sep 2012
  • Rev Recd Date: 12 Nov 2012
  • Publish Date: 10 Dec 2012
  • Several kinds of spectral calibration technologies are introduced in detail, including the spectrum lamp spectral calibration, mono-chromator spectral calibration, tunable laser spectral calibration, and the gas cell spectral calibration. The experimental principle, experimental methods and technical characteristics of different spectral calibration technologies are described by analyzing and comparing foreign high spectral remote sensors for trace gases. Based on the characteristics of ultra-high resolution spectral calibration for atmospheric remote sensors, it points out that the bandwidth of calibration equipment should reach the level of 0.001 nm. It also suggests that the calibration method of improving optimization algorithm and comprehensive calibration methods should be considered to ensure the high spectral calibration accuracy of high spectral remote detectors for trace gases.

     

  • loading
  • [1] 郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学 ,2011,4(6):449-560. ZHENG Y Q. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics,2011,4(6):449-560.(in Chinese) [2] PERSKY M J. A review of spaceborne infrared Fourier transform spectrometer for remote sensing[J]. Rev. Sci, Instrum,1995(66):4763-4797. [3] POLLOCK R,HARING R E,HOLDEN J R,et al.. The orbiting carbon observatory instrument:performance of the OCO instrument and plans for the OCO-2 instrument:sensors systems and next-generation satellites XIV[J]. SPIE,2010,7826:78260W. [4] 杨宜. 成像光谱仪光谱定标技术[J]. 红外 (月刊),2006,27(8):24-26. YANG Y. Spectral calibration of hypersperctral imager[J]. Infrared,2006,27(8):24-26.(in Chinese) [5] 李幼平,禹秉熙,王玉鹏. 成像光谱仪辐射定标影响量的测量链与不确定度[J]. 光学 精密工程 ,2006,14(5):822-828. LI Y P,YU B Y,WANG Y P,et al.. Measurement chain of influence quantities and uncertainty of radiometric calibration for imaging spectrometer[J]. Opt. Precision Eng.,2006,14(5):822-828.(in Chinese) [6] 郑玉权. 超光谱成像仪的精细光谱定标[J]. 光学 精密工程 ,2010,18(11):2347-2354. ZHENG Y Q. Precise spectral calibration for hyperspectral imager[J]. Opt. Precision Eng.,2010,18(11):2347-2354.(in Chinese) [7] 王建宇. 成像光谱仪的光谱响应函数及光谱分辨能力[J]. 成像光谱技术 ,1991:44-50. WANG J Y. Spectral response and spectral resolution of hyperspectral imaging[J]. Imaging Spectrum,1991:44-50.(in Chinese) [8] 李聪,王咏梅. 用PtNe灯对大气紫外成像光谱仪进行光谱定标[J]. 光谱学与光谱分析 ,2010,30(12):3302-3305. LI C, WANG Y M. Spectral calibration of the atmosphere ultraviolet imaging spectrograph using a PtNe lamp[J]. Spe. Spe. Anal.,2010,30(12):3302-3305.(in Chinese) [9] BOVENSMANN H,BURROWS J P,BUCHWITZ M,et al.. SCIAMACHY-mission objectives and measurement modes[J]. J. Atmos. Sci.,1999,56(2):127-150. [10] HOOGEVEEN R W M,SPRUIJT H J,BROERS B,et al.. Near-infrared focal-plane arrays for SCIAMACHY[J]. SPIE,1995,2583:459-470. [11] KRUIZINGA B,SMORENBURG C,VISSER H. Calibration concept of SCIAMACHY[J]. SPIE,1994,2209:196-209. [12] 余典,李笑,杨成龙,等. 光电直读光谱仪标定方法的研究[J]. 光学与光电技术 ,2011,9(4):88-91. YU D,LI X,YANG CH L,et al. Study on the calibration method of direct-reading spectrometer[J]. Opt. Opt. Tech.,2011,9(4):88-91. [13] MICHAEL B,HEINRICH B,MAXIMILIAN R,et al.. Passive satellite remote sensing of carbon dioxide and methane:SCIAMACHY, GOSAT, CarbonSat[J]. Geophys Ress Abstracts,2011,13:6556. [14] DELWART S,HUOT J-P, BOURG L. Calibration and early results of MERIS on ENVISAT[J]. SPIE,2003,4881:337-342. [15] CURTISS D O,JEFFREY B,ROBERT L A. Ocean PHILLS hyperspectral imager:design, characterization, and calibration[J]. Optics Express,2002,10(4):210-221. [16] BARRY P S,SHEPANSKI J,SEGAL C. Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system[J]. SPIE,2002,4480:231-235. [17] MAGER R,FRICKE W,BURROWS J P. SCIMACHY a new-generation of hyperspectral remote sensing instrument[J]. SPIE,1997,3106:84-94. [18] CHRIEN T G,GREEN R O,et al.. Accuracy of the spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectroscopy of the terretrial environment[J]. SPIE,1990,1298:37-49. [19] VANE G,CHRIEN T G,MILLER E A,et al.. Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer[J]. SPIE,1987,834:91-101. [20] AMOLD G T,FITZGERALD M F,GRANT P S,et al.. MODIS airborne simulator radiometric calibration[J]. SPIE,1996,2820:56-66. [21] JERRY Z,DANIEL G,ROBERT M,et al.. Calibration procedures and measurements for the COMPASS hyperspectral imager[J]. SPIE,2004,5425:182-188. [22] SCHYMANSKI E L,MEINER T C,MERINGER M,et al.. Result of anew straylight correction for SCIAMACHY . Proc. of the Envisat Symposium,Montreux,Switzerland, April 23-27,2007:SP-636. [23] ZADNIK J,GUERIN D,MOSS R. Calibration procedures and measurements for the COMPASS hyperspectral imager[J]. SPIE,2004,5425:182-188. [24] 黄曙江. 单色仪测波长中的不确定度分析[J]. 计量与测试技术 ,2006,33(8):12-13. HUANG SH J. Analyse two method that the single-color survey the wavelength[J]. Metr. Mea. Thec.,2006,33(8):12-13. [25] ANDERSON V E,FOX N P,NETTLETON D H,et al.. Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry[J]. Appl. Opt.,1992,31:536-545. [26] CRIPS D,JOHNSON C. The orbiting carbon observatory mission[J]. Acta Astronaut,2005,56:193-197. [27] CRISP D,DECOLA P L. NASA Orbiting Carbon Observatory:measuring the column averaged carbon dioxide mole fraction from space[J]. J. Appl. Remote Sensing,2008,2(1):2-6. [28] DAY J O,O'DELL C W,POLLOCK R,et al.. Preflight spectral calibration of the orbiting carbon observatory[J]. IEEE T Geosci Remote,2011,49(7):2793-2801. [29] HARING R,POLLOCK R,SUTIN B. Current development status of the orbiting carbon observatory instrument optical design.Infared Spaceborne Remote Sensing[J]. SPIE,2005,5883:58830C. [30] HAMAZAKI T,KUZE A,KONDO K. Sensor system for Greenhouse Gas Observing Satellite(GOSAT)[J]. SPIE,2004,5543:275-283. [31] GENEST J,TREMBLAY P. Instrument line shape of Fourier transform spectrometers:analytic solutions for nonuniformly illuminated off-axis detectors[J]. Appl. Opt.,1999,38(25):5438. [32] KAMEYAMA S,IMAKI M. Development of 1.6 m continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing[J]. Opt. Lett.,2009,34(10):1513-1515. [33] SHIOMI K,KAWAKAMI S,KINA T,et al.. Calibration plan of GOSAT sensors[J]. SPIE,2010,6744:67440G. [34] SAKAIZAWA D,KAWAKAMI S,NAKAJIMA M,et al.. Path-averaged atmospheric CO2 measurement using a 1.57 μm active remote sensor compared with multi-positioned in situ sensors[J]. SPIE,2009,7460:7460061. [35] SHIOMI K,SUTO H,KAWAKAMI S,et al.. Calibration plan of GOSAT TANSO . Conference in Fourier Transform Spectroscopy(FTS),Sante Fe,New Mexico,Feb 11,2007. [36] NOEL S,BOVENSMANN H,BURROWS J P,et al.. SCIAMACHY instrument on ENVISAT-1[J]. SPIE,1998,3498:99-104.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3165) PDF downloads(936) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return