Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
ZHAO Hong-bin, SU An, YIN Xiang-bao, MENG Cheng-ju, JIANG Si-ting, GAO Ying-ju. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203
Citation: ZHAO Hong-bin, SU An, YIN Xiang-bao, MENG Cheng-ju, JIANG Si-ting, GAO Ying-ju. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. doi: 10.37188/CO.2021-0203

The modulation effect of graphene defects on the light absorption properties of photonic crystals

doi: 10.37188/CO.2021-0203
Funds:  Supported by National Natural Science Foundation of China (No. 51161003), High-level Talents Scientific Research Start-up Project in 2018 of Hechi University (No. XJ2018GKQ017), Scientific Research Project in 2020 of Hechi University (No. 2020XJZC001).
More Information
  • Corresponding author: suan3283395@163.com
  • Received Date: 22 Nov 2021
  • Rev Recd Date: 14 Dec 2021
  • Accepted Date: 01 Mar 2022
  • Available Online: 01 Mar 2022
  • Publish Date: 20 May 2022
  • The structure model (${\rm{ACG}}^{K_1}$CB)NCGKC(${\rm{BCG}}^{K_2}$CA)M of photonic crystal with graphene defect is constructed and the modulation effect of graphene defects on the light absorption characteristics of photonic crystals is studied by transfer matrix method and computer simulation. When graphene defect are introduced into the photonic crystal, the optical absorptivity of the photonic crystal are enhanced and an obvious narrow-band absorption peak appears. With the increase of period number M or K2, the optical absorptivity increases. When M=6, the absorptivity is 96.55%, when K2=4, the absorptivity is 43.30%. The absorption peak moves towards the short wave with the increase of M while towards the long wave with the increase of K2. With the increase of the period number K, the light absorption of photonic crystal increases to the maximum value first and then decreases, and the absorption peak moves towards the short wave. As dA, the thickness of A medium layer (monatomic silicon) increases, the optical absorptivity of photonic crystal is enhanced. When dA=178.25 nm, the absorptivity is 48.54%, and the absorption peak moves to the long wave direction; With the increase of the thickness dB of B (carbon tetrachloride) and dC of C (gallium arsenide) dielectric layer, the optical absorptivity of photonic crystals decreases. When dB=178.25 nm, the absorptivity is 33.12%, when dC=155.25 nm, the absorptivity is 25.89%, and the absorption peak moves to long wave direction. With the increase of incident angle θ, the optical absorptivity of photonic crystal first increases to the maximum and then decreases, and the absorption peak moves in the short wave direction. The result shows that graphene defects have a good modulation effect on the light absorption characteristics of photonic crystals, which provides a theoretical reference for the research and selection of novel optical absorbers, filters and total reflectors.

     

  • loading
  • [1]
    YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062. doi: 10.1103/PhysRevLett.58.2059
    [2]
    JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. doi: 10.1103/PhysRevLett.58.2486
    [3]
    苏安, 蒙成举, 唐秀福, 等. 对称结构光子晶体的表面光学Tamm态[J]. 红外与激光工程,2019,48(8):0817001. doi: 10.3788/IRLA201948.0817001

    SU A, MENG CH J, TANG X F, et al. Optical Tamm state on the surface of photonic crystal of symmetric structure[J]. Infrared and Laser Engineering, 2019, 48(8): 0817001. (in Chinese) doi: 10.3788/IRLA201948.0817001
    [4]
    李天琦, 毛小洁, 雷健, 等. 固体激光器与光纤激光器对光子晶体光纤棒耦合的分析与对比[J]. 中国光学,2018,11(6):958-973. doi: 10.3788/co.20181106.0958

    LI T Q, MAO X J, LEI J, et al. Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 2018, 11(6): 958-973. (in Chinese) doi: 10.3788/co.20181106.0958
    [5]
    许江勇, 周波, 苏安, 等. 左右手材料光子晶体带隙及表面波局域电场特性[J]. 红外与激光工程,2020,49(9):20200052. doi: 10.3788/IRLA20200052

    XU J Y, ZHOU B, SU A, et al. Band gap and local electric field characteristics of surface waves in left-handed and right-handed materials of photonic crystal[J]. Infrared and Laser Engineering, 2020, 49(9): 20200052. (in Chinese) doi: 10.3788/IRLA20200052
    [6]
    苏安, 蒙成举, 江思婷, 等. 复介质对光量子阱光传输特性的激活效应[J]. 中国光学,2020,13(2):396-410. doi: 10.3788/co.20201302.0396

    SU A, MENG CH J, JIANG S T, et al. Activation effect of complex medium on the optical propagation properties of optical quantum well[J]. Chinese Optics, 2020, 13(2): 396-410. (in Chinese) doi: 10.3788/co.20201302.0396
    [7]
    申家岭, 路元刚, 马海霞, 等. 基于双缺陷一维光子晶体的非线性激光限幅方法[J]. 中国激光,2019,46(8):0808001. doi: 10.3788/CJL201946.0808001

    SH J L, LU Y G, MA H X, et al. Nonlinear laser-limiting method based on one-dimensional photonic crystals with double defects[J]. Chinese Journal of Lasers, 2019, 46(8): 0808001. (in Chinese) doi: 10.3788/CJL201946.0808001
    [8]
    潘文亮, 武校刚, 卢禹昊, 等. 一维缺陷型光子晶体湿敏特性研究[J]. 量子光学学报,2020,26(4):382-391.

    PAN W L, WU X G, LU Y H, et al. Study on the characteristics of humidity sensitive for one-dimensional photonic crystal with defects[J]. Journal of Quantum Optics, 2020, 26(4): 382-391. (in Chinese)
    [9]
    苏安, 王高峰, 蒙成举, 等. 光子晶体二元缺陷微腔的光传输特性[J]. 红外与激光工程,2017,46(6):0620004. doi: 10.3788/IRLA201746.0620004

    SU A, WANG G F, MENG CH J, et al. Light propagation characteristic of dual defect microcavity of photonic crystal[J]. Infrared and Laser Engineering, 2017, 46(6): 0620004. (in Chinese) doi: 10.3788/IRLA201746.0620004
    [10]
    BRUNA M, BORINI S. Optical constants of graphene layers in the visible range[J]. Applied Physics Letters, 2009, 94(3): 031901. doi: 10.1063/1.3073717
    [11]
    SANG D K, WANG H D, GUO ZH N, et al. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications[J]. Advanced Functional Materials, 2019, 29(45): 1903419. doi: 10.1002/adfm.201903419
    [12]
    ZHANG L, GONG T, YU ZH Q, et al. Recent advances in hybridization, doping, and functionalization of 2D xenes[J]. Advanced Functional Materials, 2021, 31(1): 2005471. doi: 10.1002/adfm.202005471
    [13]
    WANG Y ZH, WU Q, WANG H D, et al. Thermally tunable microfiber knot resonator with flexible graphene heater[J]. Chinese Optics Letters, 2021, 19(5): 051301. doi: 10.3788/COL202119.051301
    [14]
    ZHANG Y T. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J]. Chinese Optics, 2021, 14(5): 1251-1258. doi: 10.37188/CO.2020-0068
    [15]
    曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080

    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    [16]
    赵娟平. 单层石墨烯电子结构、光学与热力学性能研究[D]. 汉中: 陕西理工大学, 2019: 1-59.

    ZHAO J P. Study on electronic structure, optics and thermodynamic properties of single layer graphene[D]. Hanzhong: Shaanxi University of Technology, 2019: 1-59. (in Chinese)
    [17]
    王磊, 李培丽. 基于光学Tamm态的石墨烯光开关的研究[J]. 光通信研究,2018(5):59-62.

    WANG L, LI P L. Study on graphene optical switch based on optical Tamm states[J]. Study on Optical Communications, 2018(5): 59-62. (in Chinese)
    [18]
    王磊, 栾开智, 左依凡, 等. 基于光学Tamm态的石墨烯光调制器[J]. 中国激光,2018,45(11):1106001. doi: 10.3788/CJL201845.1106001

    WANG L, LUAN K ZH, ZUO Y F, et al. Graphene optical modulator based on optical Tamm states[J]. Chinese Journal of Lasers, 2018, 45(11): 1106001. (in Chinese) doi: 10.3788/CJL201845.1106001
    [19]
    莫军, 冯国英, 杨莫愁, 等. 基于石墨烯的宽带全光空间调制器[J]. 物理学报,2018,67(21):214201. doi: 10.7498/aps.67.20180307

    MO J, FENG G Y, YANG M CH, et al. Graphene-based broadband all-optical spatial modulator[J]. Acta Physica Sinica, 2018, 67(21): 214201. (in Chinese) doi: 10.7498/aps.67.20180307
    [20]
    高金霞, 兰云蕾, 武继江. 基于光子晶体异质结构的磁可调石墨烯多带吸收[J]. 发光学报,2020,41(5):624-630. doi: 10.3788/fgxb20204105.0624

    GAO J X, LAN Y L, WU J J. Magnetically tunable multi-band absorption of graphene based on photonic crystal heterostructure[J]. Chinese Journal of Luminescence, 2020, 41(5): 624-630. (in Chinese) doi: 10.3788/fgxb20204105.0624
    [21]
    YI L J, LI CH H. Light enhanced absorption of graphene based on parity-time symmetry structure[J]. Chinese Journal of Luminescence, 2022, 43(1): 119-128. doi: 10.37188/CJL.20210322
    [22]
    刘金萍, 李欣, 王瑞荣, 等. 激光诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报,2021,42(12):1900-1905. doi: 10.37188/CJL.20210251

    LIU J P, LI X, WANG R R, et al. Preparation of graphene quantum dots by laser-induced polydimethylsiloxane[J]. Chinese Journal of Luminescence, 2021, 42(12): 1900-1905. (in Chinese) doi: 10.37188/CJL.20210251
    [23]
    王晓愚, 毕卫红, 崔永兆, 等. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究[J]. 物理学报,2020,69(19):194202. doi: 10.7498/aps.69.20200750

    WANG X Y, BI W H, CUI Y ZH, et al. Synthesis of photonic crystal fiber based on graphene directly grown on air-hole by chemical vapor deposition[J]. Acta Physica Sinica, 2020, 69(19): 194202. (in Chinese) doi: 10.7498/aps.69.20200750
    [24]
    KAIPA C S R, YAKOVLEV A B, HANSON G W, et al. Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies[J]. Physical Review B, 2012, 85(24): 245407. doi: 10.1103/PhysRevB.85.245407
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(748) PDF downloads(193) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return