Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LIN Ruo-yu, WU Yi-fan, FU Bo-yan, WANG Shu-ming, WANG Zhen-lin, ZHU Shi-ning. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. doi: 10.37188/CO.2021-0096
Citation: LIN Ruo-yu, WU Yi-fan, FU Bo-yan, WANG Shu-ming, WANG Zhen-lin, ZHU Shi-ning. Application of chromatic aberration control of metalens[J]. Chinese Optics, 2021, 14(4): 764-781. doi: 10.37188/CO.2021-0096

Application of chromatic aberration control of metalens

doi: 10.37188/CO.2021-0096
Funds:  Supported by National Program on Key Basic Research Project of China (No. 2017YFA0303700); National Natural Science Foundation of China (No. 11621091, No. 11822406, No. 11774164, No. 11834007, No. 11774162)
More Information
  • Metasurface consists of the arrangement of the specially designed subwavelength nano units, which is the two-dimensional counterpart of metamaterial. Metasurface can modulate the electromagnetic field on a microscopic scale to allow the arbitrary wavefront manipulation. At present, it has been used to flexibly control various optical parameters such as phase, polarization, and amplitude. Among all of the applications based on metasurfaces, metalens is no doubt one of the most important and basic research interset. Because its thickness is on the order of wavelength, compared with traditional optical lenses, it can significantly increase the integration of optical devices and reduce the systematic complexity. However, the chromatic aberration caused by the inherent dispersion of the material of the unit structure and the diffraction effect of the structural geometry will severely influence the imaging quality of the metalens, and hence isolating us from a rich variety of advanced applications. Herein, we firstly discuss the principle of controlling chromatic aberration with metalens. Then we review several important imaging applications, including discrete wavelength achromatic, broadband focus imaging, light field imaging and other important imaging systems. Finally, this article makes some prospects for the incoming development direction and potential applications of metalens.

     

  • loading
  • [1]
    JAHANI S, JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36. doi: 10.1038/nnano.2015.304
    [2]
    CHEBEN P, HALIR R, SCHMID J H, et al. Subwavelength integrated photonics[J]. Nature, 2018, 560(7720): 565-572. doi: 10.1038/s41586-018-0421-7
    [3]
    KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): aag2472. doi: 10.1126/science.aag2472
    [4]
    NICHOLLS L H, RODRÍGUEZ-FORTUÑO F J, NASIR M E, et al. Ultrafast synthesis and switching of light polarization in nonlinear anisotropic metamaterials[J]. Nature Photonics, 2017, 11(10): 628-633. doi: 10.1038/s41566-017-0002-6
    [5]
    JAHANI S, KIM S, ATKINSON J, et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration[J]. Nature Communications, 2018, 9(1): 1893. doi: 10.1038/s41467-018-04276-8
    [6]
    STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284. doi: 10.1038/nphoton.2017.39
    [7]
    SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. doi: 10.1002/adem.201800864
    [8]
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
    [9]
    NI X J, WONG Z J, MREJEN M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411
    [10]
    SHENG C, LIU H, WANG Y, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902-906. doi: 10.1038/nphoton.2013.247
    [11]
    HUANG Y W, LEE H W, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319-5325. doi: 10.1021/acs.nanolett.6b00555
    [12]
    KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. doi: 10.1021/acs.nanolett.6b01897
    [13]
    WANG L, KRUK S, TANG H ZH, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505. doi: 10.1364/OPTICA.3.001504
    [14]
    DHARMAVARAPU R, IZUMI K I, KATAYAMA I, et al. Dielectric cross-shaped-resonator-based metasurface for vortex beam generation at mid-IR and THz wavelengths[J]. Nanophotonics, 2019, 8(7): 1263-1270. doi: 10.1515/nanoph-2019-0112
    [15]
    MIA M B, AHMED S Z, AHMED I, et al. Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk[J]. Optica, 2020, 7(8): 881-887. doi: 10.1364/OPTICA.394987
    [16]
    SHERROTT M C, HON P W C, FOUNTAINE K T, et al. Experimental demonstration of > 230°phase modulation in gate-tunable graphene-gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034. doi: 10.1021/acs.nanolett.7b00359
    [17]
    RHO J, YE Z L, XIONG Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J]. Nature Communications, 2010, 1: 143. doi: 10.1038/ncomms1148
    [18]
    SEGOVIA P, MARINO G, KRASAVIN A V, et al. Hyperbolic metamaterial antenna for second-harmonic generation tomography[J]. Optics Express, 2015, 23(24): 30730-30738. doi: 10.1364/OE.23.030730
    [19]
    SHEKHAR P, PENDHARKER S, SAHASRABUDHE H, et al. Extreme ultraviolet plasmonics and Cherenkov radiation in silicon[J]. Optica, 2018, 5(12): 1590-1596. doi: 10.1364/OPTICA.5.001590
    [20]
    SHALTOUT A M, SHALAEV V M, BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
    [21]
    ZHANG L, CHEN X Q, LIU SH, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    [22]
    CHEN SH Q, LI ZH CH, LIU W W, et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 2019, 31(16): 1802458. doi: 10.1002/adma.201802458
    [23]
    LI Y, LI X, CHEN L W, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
    [24]
    REMNEV M A, KLIMOV V V. Metasurfaces: a new look at Maxwell's equations and new ways to control light[J]. Physics-Uspekhi, 2018, 61(2): 157-190. doi: 10.3367/UFNe.2017.08.038192
    [25]
    TSENG M L, HSIAO H H, CHU C H, et al. Metalenses: advances and applications[J]. Advanced Optical Materials, 2018, 6(18): 1800554. doi: 10.1002/adom.201800554
    [26]
    GENEVET P, CAPASSO F, AIETA F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. doi: 10.1364/OPTICA.4.000139
    [27]
    LI L, LIU Z X, REN X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source[J]. Science, 2020, 368(6498): 1487-1490. doi: 10.1126/science.aba9779
    [28]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [29]
    HUANG T Y, GROTE R R, MANN S A, et al. A monolithic immersion metalens for imaging solid-state quantum emitters[J]. Nature Communications, 2019, 10(1): 2392. doi: 10.1038/s41467-019-10238-5
    [30]
    YUE F Y, WEN D D, XIN J T, et al. Vector vortex beam generation with a single plasmonic metasurface[J]. ACS Photonics, 2016, 3(9): 1558-1563. doi: 10.1021/acsphotonics.6b00392
    [31]
    ZHU W M, SONG Q H, YAN L B, et al. A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743. doi: 10.1002/adma.201501943
    [32]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    [33]
    PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
    [34]
    HSIAO H H, CHEN Y H, LIN R J, et al. Integrated-resonant units: integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation (advanced optical materials 12/2018)[J]. Advanced Optical Materials, 2018, 6(12): 1870047. doi: 10.1002/adom.201870047
    [35]
    GOLDYS E M, GODLEWSKI M, LANGER R, et al. Analysis of the red optical emission in cubic GaN grown by molecular-beam epitaxy[J]. Physical Review B, 1999, 60(8): 5464-5469. doi: 10.1103/PhysRevB.60.5464
    [36]
    HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064
    [37]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [38]
    WU P C, TSAI W Y, CHEN W T, et al. Versatile polarization generation with an aluminum plasmonic metasurface[J]. Nano Letters, 2017, 17(1): 445-452. doi: 10.1021/acs.nanolett.6b04446
    [39]
    LI L, LI T, TANG X M, et al. Plasmonic polarization generator in well-routed beaming[J]. Light:Science &Applications, 2015, 4(9): e330.
    [40]
    WU P C, ZHU W M, SHEN ZH X, et al. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface[J]. Advanced Optical Materials, 2017, 5(7): 1600938. doi: 10.1002/adom.201600938
    [41]
    HUANG L L, MÜHLENBERND H, LI X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541
    [42]
    WU P C, PAPASIMAKIS N, TSAI D P. Self-affine graphene metasurfaces for tunable broadband absorption[J]. Physical Review Applied, 2016, 6(4): 044019. doi: 10.1103/PhysRevApplied.6.044019
    [43]
    THYAGARAJAN K, SOKHOYAN R, ZORNBERG L, et al. Millivolt modulation of plasmonic metasurface optical response via ionic conductance[J]. Advanced Materials, 2017, 29(31): 1701044. doi: 10.1002/adma.201701044
    [44]
    KHORASANINEJAD M, AIETA F, KANHAIYA P, et al. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8): 5358-5362. doi: 10.1021/acs.nanolett.5b01727
    [45]
    STRIKWERDA A C, SLEASMAN T, ANDERSON W, et al. Sub-wavelength focusing in inhomogeneous media with a metasurface near field plate[J]. Sensors (Basel), 2019, 19(20): 4534. doi: 10.3390/s19204534
    [46]
    KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
    [47]
    EPSTEIN A, ELEFTHERIADES G V. Huygens’ metasurfaces via the equivalence principle: design and applications[J]. Journal of the Optical Society of America B, 2016, 33(2): A31-A50. doi: 10.1364/JOSAB.33.000A31
    [48]
    CHEN H Y, WANG J F, MA H, et al. Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances[J]. Journal of Applied Physics, 2014, 115(15): 154504. doi: 10.1063/1.4869917
    [49]
    DING X M, MONTICONE F, ZHANG K, et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200. doi: 10.1002/adma.201405047
    [50]
    CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d
    [51]
    DING F, CHANG B D, WEI Q SH, et al. Versatile polarization generation and manipulation using dielectric metasurfaces[J]. Laser &Photonics Reviews, 2020, 14(11): 2000116.
    [52]
    RUBIN N A, D'AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
    [53]
    ARBABI E, KAMALI S M, ARBABI A, et al. Full-stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 2018, 5(8): 3132-3140. doi: 10.1021/acsphotonics.8b00362
    [54]
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [55]
    HUANG Y W, CHEN W T, TSAI W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127. doi: 10.1021/acs.nanolett.5b00184
    [56]
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    [57]
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    [58]
    WAN W Q, QIAO W, HUANG W B, et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J]. Optics Express, 2017, 25(2): 1114-1122. doi: 10.1364/OE.25.001114
    [59]
    FATTAL D, PENG ZH, TRAN T, et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display[J]. Nature, 2013, 495(7441): 348-351. doi: 10.1038/nature11972
    [60]
    LIPPMANN G. Épreuves réversibles donnant la sensation du relief[J]. Journal de Physique Théorique et Appliquée, 1908, 7(1): 821-825.
    [61]
    ADELSON E H, WANG J Y A. Single lens stereo with a plenoptic camera[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 99-106. doi: 10.1109/34.121783
    [62]
    BOK Y, JEON H G, KWEON I S. Geometric calibration of micro-lens-based light field cameras using line features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 287-300. doi: 10.1109/TPAMI.2016.2541145
    [63]
    SHEN K C, KU CH T, HSIEH C, et al. Deep-ultraviolet hyperbolic metacavity laser[J]. Advanced Materials, 2018, 30(21): 1706918. doi: 10.1002/adma.201706918
    [64]
    GONGORA J S T, MIROSHNICHENKO A E, KIVSHAR Y S, et al. Anapole nanolasers for mode-locking and ultrafast pulse generation[J]. Nature Communications, 2017, 8: 15535. doi: 10.1038/ncomms15535
    [65]
    ZHANG Q, LI G Y, LIU X F, et al. A room temperature low-threshold ultraviolet plasmonic nanolaser[J]. Nature Communications, 2014, 5: 4953. doi: 10.1038/ncomms5953
    [66]
    ZHANG W X, XIE X, HAO H M, et al. Low-threshold topological nanolasers based on the second-order corner state[J]. Light:Science &Applications, 2020, 9: 109.
    [67]
    MELENTIEV P, KALMYKOV A, GRITCHENKO A, et al. Plasmonic nanolaser for intracavity spectroscopy and sensorics[J]. Applied Physics Letters, 2017, 111(21): 213104. doi: 10.1063/1.5003655
    [68]
    SWEATT W C. Achromatic triplet using holographic optical elements[J]. Applied Optics, 1977, 16(5): 1390-1391. doi: 10.1364/AO.16.001390
    [69]
    AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992. doi: 10.1038/ncomms14992
    [70]
    LIN D M, HOLSTEEN A L, MAGUID E, et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Letters, 2016, 16(12): 7671-7676. doi: 10.1021/acs.nanolett.6b03505
    [71]
    ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength metasurfaces through spatial multiplexing[J]. Scientific Reports, 2016, 6: 32803. doi: 10.1038/srep32803
    [72]
    ARBABI E, ARBABI A, KAMALI S M, et al. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468-18477. doi: 10.1364/OE.24.018468
    [73]
    ARBABI E, LI J Q, HUTCHINS R J, et al. Two-photon microscopy with a double-wavelength metasurface objective lens[J]. Nano Letters, 2018, 18(8): 4943-4948. doi: 10.1021/acs.nanolett.8b01737
    [74]
    EISENBACH O, AVAYU O, DITCOVSKI R, et al. Metasurfaces based dual wavelength diffractive lenses[J]. Optics Express, 2015, 23(4): 3928-3936. doi: 10.1364/OE.23.003928
    [75]
    WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. doi: 10.1038/srep21545
    [76]
    HU J T, LIU CH H, REN X CH, et al. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano, 2016, 10(11): 10275-10282. doi: 10.1021/acsnano.6b05855
    [77]
    ZHAO Z Y, PU M B, GAO H, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781. doi: 10.1038/srep15781
    [78]
    KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
    [79]
    ARBABI E, ARBABI A, KAMALI S M, et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces[J]. Optica, 2017, 4(6): 625-632. doi: 10.1364/OPTICA.4.000625
    [80]
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    [81]
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    [82]
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    [83]
    SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light:Science &Applications, 2018, 7: 85.
    [84]
    CHEN W T, ZHU A Y, SISLER J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 2019, 10(1): 355. doi: 10.1038/s41467-019-08305-y
    [85]
    NDAO A, HSU L, HA J, et al. Octave bandwidth photonic fishnet-achromatic-metalens[J]. Nature Communications, 2020, 11(1): 3205. doi: 10.1038/s41467-020-17015-9
    [86]
    CHEN W T, ZHU A Y, SISLER J, et al. Broadband achromatic metasurface-refractive optics[J]. Nano Letters, 2018, 18(12): 7801-7808. doi: 10.1021/acs.nanolett.8b03567
    [87]
    KHORASANINEJAD M, CHEN W T, OH J, et al. Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy[J]. Nano Letters, 2016, 16(6): 3732-3737. doi: 10.1021/acs.nanolett.6b01097
    [88]
    ZHU A Y, CHEN W T, SISLER J, et al. Compact aberration‐corrected spectrometers in the visible using dispersion‐tailored metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801144. doi: 10.1002/adom.201801144
    [89]
    FARAJI-DANA M, ARBABI E, ARBABI A, et al. Compact folded metasurface spectrometer[J]. Nature Communications, 2018, 9(1): 4196. doi: 10.1038/s41467-018-06495-5
    [90]
    LI K, GUO Y H, PU M B, et al. Dispersion controlling meta-lens at visible frequency[J]. Optics Express, 2017, 25(18): 21419-21427. doi: 10.1364/OE.25.021419
    [91]
    SISLER J, CHEN W T, ZHU A Y, et al. Controlling dispersion in multifunctional metasurfaces[J]. APL Photonics, 2020, 5(5): 056107. doi: 10.1063/1.5142637
    [92]
    CHEN B H, WU P C, SU V C, et al. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 2017, 17(10): 6345-6352. doi: 10.1021/acs.nanolett.7b03135
    [93]
    WANG B, DONG F L, LI Q T, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235-5240. doi: 10.1021/acs.nanolett.6b02326
    [94]
    ROTH D J, JIN M K, MINOVICH A E, et al. 3D full-color image projection based on reflective metasurfaces under incoherent illumination[J]. Nano Letters, 2020, 20(6): 4481-4486. doi: 10.1021/acs.nanolett.0c01273
    [95]
    LI ZH Y, LIN P, HUANG Y W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J]. Science Advances, 2021, 7(5): eabe4458. doi: 10.1126/sciadv.abe4458
    [96]
    CHEN CH, SONG W G, CHEN J W, et al. Spectral tomographic imaging with aplanatic metalens[J]. Light:Science &Applications, 2019, 8: 99.
    [97]
    PAHLEVANINEZHAD H, KHORASANINEJAD M, HUANG Y W, et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo[J]. Nature Photonics, 2018, 12(9): 540-547. doi: 10.1038/s41566-018-0224-2
    [98]
    LIN R J, SU V C, WANG SH M, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi: 10.1038/s41565-018-0347-0
    [99]
    FAN ZH B, QIU H Y, ZHANG H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light:Science &Applications, 2019, 8: 67.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(2534) PDF downloads(589) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return