Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
FAN Zhi-bin, CHEN Ze-ming, ZHOU Xin, HE Xin-tao, JIANG Shao-ji, DONG Jian-wen. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. doi: 10.37188/CO.2021-0093
Citation: FAN Zhi-bin, CHEN Ze-ming, ZHOU Xin, HE Xin-tao, JIANG Shao-ji, DONG Jian-wen. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. doi: 10.37188/CO.2021-0093

Recent advances in silicon nitride-based photonic devices and applications

doi: 10.37188/CO.2021-0093
Funds:  Supported by National Natural Science Foundation of China (No. 62035016, No. 61805288, No. 11904421); Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110661)
More Information
  • Corresponding author: dongjwen@mail.sysu.edu.cn
  • Received Date: 25 Apr 2021
  • Rev Recd Date: 08 Jun 2021
  • Available Online: 25 Jun 2021
  • Publish Date: 01 Jul 2021
  • Silicon nitride provides a CMOS-compatible integrated photonic platform with rich optical properties. By adjusting the relevant fabrication parameters, silicon nitride with specific refractive index between 1.9~3.2 can be achieved, and its extinction and nonlinear coefficient can have a large adjustable range. Silicon nitride has wide potential applications in many fields such as thin film optics, micro-nano planar optics and nonlinear integrated photonics. In this paper, we review the optical properties of silicon nitride and its recent advances in optical film, micro-nano metamaterial and silicon photonics, and also review the research progresses on the applications of solar thin films, visible metasurfaces, grating couplers and nonlinear optical waveguides.

     

  • loading
  • [1]
    王正军. 氮化硅陶瓷的研究进展[J]. 材料科学与工艺,2009,17(2):155-158.

    WANG ZH J. Research progress of silicon nitride ceramic[J]. Materials Science &Technology, 2009, 17(2): 155-158. (in Chinese)
    [2]
    LANGE H, WÖTTING G, WINTER G. Silicon nitride—from powder synthesis to ceramic materials[J]. Angewandte Chemie International Edition in English, 1991, 30(12): 1579-1597. doi: 10.1002/anie.199115791
    [3]
    DANTE R C, KAJDAS C K. A review and a fundamental theory of silicon nitride tribochemistry[J]. Wear, 2012, 288: 27-38. doi: 10.1016/j.wear.2012.03.001
    [4]
    KALOYEROS A E, JOVÉ F A, GOFF J, et al. Review—silicon nitride and silicon nitride-rich thin film technologies: trends in deposition techniques and related applications[J]. ECS Journal of Solid State Science and Technology, 2017, 6(10): P691-P714. doi: 10.1149/2.0011710jss
    [5]
    BALÁZSI C, KÓNYA Z, WÉBER F, et al. Preparation and characterization of carbon nanotube reinforced silicon nitride composites[J]. Materials Science and Engineering:C, 2003, 23(6-8): 1133-1137. doi: 10.1016/j.msec.2003.09.085
    [6]
    ŠAJGALIK P, DUSZA J, HOFFMANN M J. Relationship between microstructure, toughening mechanisms, and fracture toughness of reinforced silicon nitride ceramics[J]. Journal of the American Ceramic Society, 1995, 78(10): 2619-2624. doi: 10.1111/j.1151-2916.1995.tb08031.x
    [7]
    SCHMIDT S, HÄNNINEN T, GOYENOLA C, et al. SiNx coatings deposited by reactive high power impulse magnetron sputtering: process parameters influencing the nitrogen content[J]. ACS Applied Materials &Interfaces, 2016, 8(31): 20385-20395.
    [8]
    邢武超. 高导热氮化硅陶瓷的低温制备及性能研究[D]. 郑州: 郑州航空工业管理学院, 2020.

    XING W CH. Study on low temperature preparation and properties of Silicon Nitride ceramics with high thermal conductivity[D]. Zhengzhou: Zhengzhou University of Aeronautics, 2020. (in Chinese)
    [9]
    RAIDER S I, FLITSCH R, ABOAF J A, et al. Surface oxidation of silicon nitride films[J]. Journal of the Electrochemical Society, 1976, 123(4): 560-565. doi: 10.1149/1.2132877
    [10]
    LUBE T, DUSZA J. A silicon nitride reference material—A testing program of ESIS TC6[J]. Journal of the European Ceramic Society, 2007, 27(2-3): 1203-1209. doi: 10.1016/j.jeurceramsoc.2006.04.020
    [11]
    MUÑOZ P, MICÓ G, BRU L A, et al. Silicon nitride photonic integration platforms for visible, near-infrared and mid-infrared applications[J]. Sensors, 2017, 17(9): 2088. doi: 10.3390/s17092088
    [12]
    FAN ZH B, SHAO Z K, XIE M Y, et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging[J]. Physical Review Applied, 2018, 10(1): 014005. doi: 10.1103/PhysRevApplied.10.014005
    [13]
    YE M, PENG Y H, YI Y SH. Silicon-rich silicon nitride thin films for subwavelength grating metalens[J]. Optical Materials Express, 2019, 9(3): 1200-1207. doi: 10.1364/OME.9.001200
    [14]
    TAN D T H, OOI K J A, NG D K T. Nonlinear optics on silicon-rich nitride-a high nonlinear figure of merit CMOS platform [Invited][J]. Photonics Research, 2018, 6(5): B50-B66. doi: 10.1364/PRJ.6.000B50
    [15]
    DAI J P, GAO W, LIU B, et al. Design and fabrication of UV band-pass filters based on SiO2/Si3N4 dielectric distributed bragg reflectors[J]. Applied Surface Science, 2016, 364: 886-891. doi: 10.1016/j.apsusc.2015.12.222
    [16]
    LI J D, SHEN G S, CHEN W L, et al. Preparation of SiNx multilayer films by mid-frequency magnetron sputtering for crystalline silicon solar cells[J]. Materials Science in Semiconductor Processing, 2017, 59: 40-44. doi: 10.1016/j.mssp.2016.11.039
    [17]
    SOMAN A, ANTONY A. Broad range refractive index engineering of SixNy and SiOxNy thin films and exploring their potential applications in crystalline silicon solar cells[J]. Materials Chemistry and Physics, 2017, 197: 181-191. doi: 10.1016/j.matchemphys.2017.05.035
    [18]
    SOMAN A, ANTONY A. Tuneable and spectrally selective broadband reflector – Modulated photonic crystals and its application in solar cells[J]. Solar Energy, 2018, 162: 525-532. doi: 10.1016/j.solener.2018.01.061
    [19]
    SOMAN A, ANTONY A. Colored solar cells with spectrally selective photonic crystal reflectors for application in building integrated photovoltaics[J]. Solar Energy, 2019, 181: 1-8. doi: 10.1016/j.solener.2019.01.058
    [20]
    ZHAN A L, COLBURN S, TRIVEDI R, et al. Low-contrast dielectric metasurface optics[J]. ACS Photonics, 2016, 3(2): 209-214. doi: 10.1021/acsphotonics.5b00660
    [21]
    ZHAO W, LI X Y, LI S Q, et al. Sub-wavelength focusing based on all-dielectric polarization-independent metalens[J]. International Journal of Modern Physics B, 2018, 32(29): 1850321. doi: 10.1142/S0217979218503216
    [22]
    PARK J W, BAE S I, JEONG K H. Silicon nitride metalens for optical imaging[C]. 2018 International Conference on Optical MEMS and Nanophotonics (OMN), IEEE, 2018: 1-5.
    [23]
    YE M, RAY V, PENG Y H, et al. Linear polarization distinguishing metalens in visible wavelength[J]. Optics Letters, 2019, 44(2): 399-402. doi: 10.1364/OL.44.000399
    [24]
    COLBURN S, ZHAN A L, MAJUMDAR A. Metasurface optics for full-color computational imaging[J]. Science Advances, 2018, 4(2): eaar2114. doi: 10.1126/sciadv.aar2114
    [25]
    COLBURN S, MAJUMDAR A. Simultaneous achromatic and varifocal imaging with quartic metasurfaces in the visible[J]. ACS Photonics, 2020, 7(1): 120-127. doi: 10.1021/acsphotonics.9b01216
    [26]
    FAN ZH B, QIU H Y, ZHANG H L, et al. A broadband achromatic metalens array for integral imaging in the visible[J]. Light:Science &Applications, 2019, 8: 67.
    [27]
    HUO Z H, PANG X N, WANG H, et al. Engineering the chromatic dispersion in dual-wavelength metalenses for unpolarized visible light[J]. Proceedings of SPIE, 2019, 11170: 111702H.
    [28]
    LIU Y, YU Q Y, CHEN Z M, et al. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 106-115. doi: 10.1364/PRJ.406197
    [29]
    ZHAO M X, CHEN M K, ZHUANG Z P, et al. Phase characterisation of metalenses[J]. Light:Science &Applications, 2021, 10(1): 52.
    [30]
    BAYATI E, PESTOURIE R, COLBURN S, et al. Inverse designed metalenses with extended depth of focus[J]. ACS Photonics, 2020, 7(4): 873-878. doi: 10.1021/acsphotonics.9b01703
    [31]
    HUANG L CH, WHITEHEAD J, COLBURN S, et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging[J]. Photonics Research, 2020, 8(10): 1613-1623. doi: 10.1364/PRJ.396839
    [32]
    ZHAN A L, COLBURN S, DODSON C M, et al. Metasurface freeform nanophotonics[J]. Scientific Reports, 2017, 7(1): 1673. doi: 10.1038/s41598-017-01908-9
    [33]
    COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831. doi: 10.1364/OPTICA.5.000825
    [34]
    HAN ZH Y, COLBURN S, MAJUMDAR A, et al. MEMS-actuated metasurface Alvarez lens[J]. Microsystems &Nanoengineering, 2020, 6(1): 79.
    [35]
    MIYATA M, NAKAJIMA M, HASHIMOTO T. Compound-eye metasurface optics enabling a high-sensitivity, ultra-thin polarization camera[J]. Optics Express, 2020, 28(7): 9996-10014. doi: 10.1364/OE.389591
    [36]
    KANWAL S, WEN J, YU B B, et al. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum[J]. Nanomaterials, 2020, 10(3): 490. doi: 10.3390/nano10030490
    [37]
    MIYATA M, NAKAJIMA M, HASHIMOTO T. High-sensitivity color imaging using pixel-scale color splitters based on dielectric metasurfaces[J]. ACS Photonics, 2019, 6(6): 1442-1450. doi: 10.1021/acsphotonics.9b00042
    [38]
    WU SH L, YE Y, DUAN H G, et al. Large-area, optical variable-color metasurfaces based on pixelated plasmonic nanogratings[J]. Advanced Optical Materials, 2019, 7(7): 1801302. doi: 10.1002/adom.201801302
    [39]
    PARK C S, KOIRALA I, GAO S, et al. Structural color filters based on an all-dielectric metasurface exploiting silicon-rich silicon nitride nanodisks[J]. Optics Express, 2019, 27(2): 667-679. doi: 10.1364/OE.27.000667
    [40]
    GONZÁLEZ-ALCALDE A K, SALAS-MONTIEL R, KALT V, et al. Engineering colors in all-dielectric metasurfaces: metamodeling approach[J]. Optics Letters, 2020, 45(1): 89-92. doi: 10.1364/OL.45.000089
    [41]
    YANG J H, BABICHEVA V E, YU M W, et al. Structural colors enabled by lattice resonance on silicon nitride metasurfaces[J]. ACS Nano, 2020, 14(5): 5678-5685. doi: 10.1021/acsnano.0c00185
    [42]
    HONG Y F, LEI Y F, FANG X M, et al. All-dielectric high saturation structural colors with Si3N4 metasurface[J]. Modern Physics Letters B, 2020, 34(14): 2050142. doi: 10.1142/S0217984920501420
    [43]
    ÜSTÜN K, TURHAN-SAYAN G. Wideband long wave infrared metamaterial absorbers based on silicon nitride[J]. Journal of Applied Physics, 2016, 120(20): 203101. doi: 10.1063/1.4968014
    [44]
    JANG M, HORIE Y, SHIBUKAWA A, et al. Wavefront shaping with disorder-engineered metasurfaces[J]. Nature Photonics, 2018, 12(2): 84-90. doi: 10.1038/s41566-017-0078-z
    [45]
    FLANNERY J, AL MARUF R, YOON T, et al. Fabry-pérot cavity formed with dielectric metasurfaces in a hollow-core fiber[J]. ACS Photonics, 2018, 5(2): 337-341. doi: 10.1021/acsphotonics.7b01154
    [46]
    KARVOUNIS A, ASPIOTIS N, ZEIMPEKIS I, et al. Mechanochromic reconfigurable metasurfaces[J]. Advanced Science, 2019, 6(21): 1900974. doi: 10.1002/advs.201900974
    [47]
    WANG J G, SHAO Z K, WEN Y H, et al. All-dielectric metasurface grating for on-chip multi-channel orbital angular momentum generation and detection[J]. Optics Express, 2019, 27(13): 18794-18802. doi: 10.1364/OE.27.018794
    [48]
    CHEN R J, CHEN Y J, WEN Y H, et al.. Generating helical beams based on silicon-rich nitride metasurface[C]. Asia Communications and Photonics Conference (ACPC) 2019, OSA, 2019: M4A. 307.
    [49]
    YE M, RAY V, WU D CH, et al. Metalens with artificial focus pattern[J]. IEEE Photonics Technology Letters, 2020, 32(5): 251-254. doi: 10.1109/LPT.2020.2970507
    [50]
    CHEN Y Y, MIAO SH N, WANG T M, et al. Metasurface integrated monolayer exciton polariton[J]. Nano Letters, 2020, 20(7): 5292-5300. doi: 10.1021/acs.nanolett.0c01624
    [51]
    LIN W, WEN Y H, CHEN Y J, et al.. Generation of accelerating beams with autofocusing properties using dielectric metasurface for polarization control[C]. 2019 Asia Communications and Photonics Conference (ACPC), OSA, 2019: M4B.7.
    [52]
    BERESNA M, GHOLIPOUR B, LEE T, et al.. Femtosecond laser assisted fabrication of visible wavelength all-dielectric nano-membrane metasurfaces[C]. 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2019: 1.
    [53]
    ZHU L Q, YUAN SH, ZENG CH, et al.. Photoluminescence enhancement of MoS2 via dielectric metasurface[C]. 2019 International Conference on Optical MEMS and Nanophotonics (OMN), IEEE, 2019: 44-45.
    [54]
    ROMANO S, ZITO G, PENZO E, et al. Enhancing light-matter interaction in all-dielectric photonic crystal metasurfaces[J]. Proceedings of SPIE, 2019, 11028: 110280I.
    [55]
    MENON S, PROSAD A, BISWAS R, et al. Silicon nitride based guided mode resonance structures for enhancement of nonlinear optical effects[J]. Proceedings of SPIE, 2020, 11345: 113451J.
    [56]
    YIN X F, JIN J CH, SOLJAČIĆ M, et al. Observation of topologically enabled unidirectional guided resonances[J]. Nature, 2020, 580(7804): 467-471. doi: 10.1038/s41586-020-2181-4
    [57]
    MAIRE G, VIVIEN L, SATTLER G, et al. High efficiency silicon nitride surface grating couplers[J]. Optics Express, 2008, 16(1): 328-333. doi: 10.1364/OE.16.000328
    [58]
    DOERR C R, CHEN L, CHEN Y K, et al. Wide bandwidth silicon nitride grating coupler[J]. IEEE Photonics Technology Letters, 2010, 22(19): 1461-1463. doi: 10.1109/LPT.2010.2062497
    [59]
    ROMERO-GARCÍA S, MERGET F, ZHONG F, et al. Silicon nitride CMOS-compatible platform for integrated photonics applications at visible wavelengths[J]. Optics Express, 2013, 21(12): 14036-14046. doi: 10.1364/OE.21.014036
    [60]
    ZHANG H J, LI CH, TU X G, et al. High efficiency silicon nitride grating coupler[J]. Applied Physics A, 2014, 115(1): 79-82. doi: 10.1007/s00339-013-7954-2
    [61]
    ZHAO X J, LI D P, ZENG CH, et al. Compact grating coupler for 700-nm silicon nitride strip waveguides[J]. Journal of Lightwave Technology, 2016, 34(4): 1322-1327. doi: 10.1109/JLT.2015.2510025
    [62]
    LITVIK J, DOLNAK I, DADO M. Waveguide silicon nitride grating coupler[J]. Proceedings of SPIE, 2016, 10142: 1014213.
    [63]
    CHEN Y, HALIR R, MOLINA-FERNÁNDEZ Í, et al. High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides[J]. Optics Letters, 2016, 41(21): 5059-5062. doi: 10.1364/OL.41.005059
    [64]
    CHEN Y, DOMÍNGUEZ BUCIO T, KHOKHAR A Z, et al. Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides[J]. Optics Letters, 2017, 42(18): 3566-3569. doi: 10.1364/OL.42.003566
    [65]
    SUBRAMANIAN A Z, SELVARAJA S, VERHEYEN P, et al. Near-infrared grating couplers for silicon nitride photonic wires[J]. IEEE Photonics Technology Letters, 2012, 24(19): 1700-1703. doi: 10.1109/LPT.2012.2212881
    [66]
    URA S, MORI K, TSUJIMOTO R, et al.. Position dependence of coupling efficiency of grating coupler in waveguide cavity[C]. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE, 2017: 1619-1626.
    [67]
    DWIVEDI S, SONG B W, LIU Y, et al.. Demonstration of compact silicon nitride grating coupler arrays for fan-out of multicore fibers[C]. 2017 Conference on Lasers and Electro-Optics (CLEO), OSA, 2017: ATh3B. 4.
    [68]
    NAMBIAR S, HEMALATHA M, SHARMA T, et al.. Integrated silicon nitride based TE dual-band grating coupler[C]. 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2017: 1.
    [69]
    WANG SH L, HAO R. High performance apodized grating coupler for 700nm Si3N4 waveguides[C]. 2016 15th International Conference on Optical Communications and Networks (ICOCN), IEEE, 2016: 1-3.
    [70]
    ZHANG H J, LI CH, TU X G, et al. Efficient silicon nitride grating coupler with distributed Bragg reflectors[J]. Optics Express, 2014, 22(18): 21800-21805. doi: 10.1364/OE.22.021800
    [71]
    ZOU J H, YU Y, YE M Y, et al. Ultra efficient silicon nitride grating coupler with bottom grating reflector[J]. Optics Express, 2015, 23(20): 26305-26312. doi: 10.1364/OE.23.026305
    [72]
    HONG J X, YOKOYAMA S. Efficient silicon nitride grating coupler with a dielectric multilayer reflector[C]. 2017 22nd Microoptics Conference (MOC), IEEE, 2017: 58-59.
    [73]
    张赞允, 朱华, 李鸿强. 高效率低向上反射的氮化硅光栅耦合器[J]. 聊城大学学报(自然科学版),2018,31(4):31-36.

    ZHANG Z Y, ZHU H, LI H Q. High efficiency and low upward reflection silicon nitride grating coupler[J]. Journal of Liaocheng University (Natural Science), 2018, 31(4): 31-36. (in Chinese)
    [74]
    NAMBIAR S, KUMAR A, KALLEGA R, et al. High-efficiency grating coupler in 400 nm and 500 nm PECVD silicon nitride with bottom reflector[J]. IEEE Photonics Journal, 2019, 11(5): 2201213.
    [75]
    ROMERO-GARCÍA S, MERGET F, ZHONG F, et al. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector[J]. Optics Letters, 2013, 38(14): 2521-2523. doi: 10.1364/OL.38.002521
    [76]
    SACHER W D, HUANG Y, DING L, et al. Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler[J]. Optics Express, 2014, 22(9): 10938-10947. doi: 10.1364/OE.22.010938
    [77]
    XU P F, ZHANG Y F, SHAO Z K, et al. High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity[J]. Optics Letters, 2017, 42(17): 3391-3394. doi: 10.1364/OL.42.003391
    [78]
    ONG E W, FAHRENKOPF N M, COOLBAUGH D D. SiNx bilayer grating coupler for photonic systems[J]. OSA Continuum, 2018, 1(1): 13-25. doi: 10.1364/OSAC.1.000013
    [79]
    ROELOFFZEN C G H, HOEKMAN M, KLEIN E J, et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(4): 4400321.
    [80]
    BLUMENTHAL D J, HEIDEMAN R, GEUZEBROEK D, et al. Silicon nitride in silicon photonics[J]. Proceedings of the IEEE, 2018, 106(12): 2209-2231. doi: 10.1109/JPROC.2018.2861576
    [81]
    PORCEL M A G, HINOJOSA A, JANS H, et al. [INVITED] Silicon nitride photonic integration for visible light applications[J]. Optics &Laser Technology, 2019, 112: 299-306.
    [82]
    MOSS D J, MORANDOTTI R, GAETA A L, et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics[J]. Nature Photonics, 2013, 7(8): 597-607. doi: 10.1038/nphoton.2013.183
    [83]
    ROELOFFZEN C G H, ZHUANG L M, TADDEI C, et al. Silicon nitride microwave photonic circuits[J]. Optics Express, 2013, 21(19): 22937-22961. doi: 10.1364/OE.21.022937
    [84]
    BOYD J T, KUO C S. Composite prism-grating coupler for coupling light into high refractive index thin-film waveguides[J]. Applied Optics, 1976, 15(7): 1681-1683. doi: 10.1364/AO.15.1681_1
    [85]
    STUTIUS W, STREIFER W. Silicon nitride films on silicon for optical waveguides[J]. Applied Optics, 1977, 16(12): 3218-3222. doi: 10.1364/AO.16.003218
    [86]
    BOYD J T, WU R W, ZELMON D E, et al. Planar and channel optical waveguides utilizing silicon technology[J]. Proceedings of SPIE, 1985, 517: 100-105. doi: 10.1117/12.945144
    [87]
    HENRY C H, KAZARINOV R F, LEE H J, et al. Low loss Si3N4-SiO2 optical waveguides on Si[J]. Applied Optics, 1987, 26(13): 2621-2624. doi: 10.1364/AO.26.002621
    [88]
    JI X CH, BARBOSA F A S, ROBERTS S P, et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 2017, 4(6): 619-624. doi: 10.1364/OPTICA.4.000619
    [89]
    BIBERMAN A, SHAW M J, TIMURDOGAN E, et al.. Ultralow-loss silicon ring resonators[C]. IEEE 9th International Conference on Group IV Photonics, IEEE, 2012: 39-41.
    [90]
    KOBAYASHI N, SATO K, NAMIWAKA M, et al. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. Journal of Lightwave Technology, 2015, 33(6): 1241-1246. doi: 10.1109/JLT.2014.2385106
    [91]
    HERR T, HARTINGER K, RIEMENSBERGER J, et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 2012, 6(7): 480-487. doi: 10.1038/nphoton.2012.127
    [92]
    EPPING J P, HELLWIG T, HOEKMAN M, et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth[J]. Optics Express, 2015, 23(15): 19596-19604. doi: 10.1364/OE.23.019596
    [93]
    LI Q, DAVANÇO M, SRINIVASAN K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics[J]. Nature Photonics, 2016, 10(6): 406-414. doi: 10.1038/nphoton.2016.64
    [94]
    NG D K T, WANG Q, WANG T, et al. exploring high refractive index silicon-rich nitride films by low-temperature inductively coupled plasma chemical vapor deposition and applications for integrated waveguides[J]. ACS Applied Materials &Interfaces, 2015, 7(39): 21884-21889.
    [95]
    KRÜCKEL C J, FÜLÖP A, YE ZH CH, et al. Optical bandgap engineering in nonlinear silicon nitride waveguides[J]. Optics Express, 2017, 25(13): 15370-15380. doi: 10.1364/OE.25.015370
    [96]
    KRÜCKEL C J, FÜLÖP A, KLINTBERG T, et al. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides[J]. Optics Express, 2015, 23(20): 25827-25837. doi: 10.1364/OE.23.025827
    [97]
    OOI K J A, NG D K T, WANG T, et al. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge[J]. Nature Communications, 2017, 8: 13878. doi: 10.1038/ncomms13878
    [98]
    LAMY M, FINOT C, PARRIAUX A, et al. Si-rich Si nitride waveguides for optical transmissions and toward wavelength conversion around 2 μm[J]. Applied Optics, 2019, 58(19): 5165-5169. doi: 10.1364/AO.58.005165
    [99]
    LACAVA C, DOMINGUEZ BUCIO T, KHOKHAR A Z, et al. Intermodal frequency generation in silicon-rich silicon nitride waveguides[J]. Photonics Research, 2019, 7(6): 615-621. doi: 10.1364/PRJ.7.000615
    [100]
    DEBNATH K, BUCIO T D, AL-ATTILI A, et al. Photonic crystal waveguides on silicon rich nitride platform[J]. Optics Express, 2017, 25(4): 3214-3221. doi: 10.1364/OE.25.003214
    [101]
    SAHIN E, NG D K T, TAN D T H. Optical parametric gain in CMOS-compatible sub-100 μm photonic crystal waveguides[J]. APL Photonics, 2020, 5(6): 066108. doi: 10.1063/5.0003633
    [102]
    LIN G R, SU SH P, WU C L, et al. Si-rich SiNx based Kerr switch enables optical data conversion up to 12 Gbit/s[J]. Scientific Reports, 2015, 5: 9611. doi: 10.1038/srep09611
    [103]
    CLEMENTI M, DEBNATH K, SOTTO M, et al. Cavity-enhanced harmonic generation in silicon rich nitride photonic crystal microresonators[J]. Applied Physics Letters, 2019, 114(13): 131103. doi: 10.1063/1.5066996
    [104]
    WANG T, NG D K T, NG S K, et al. Supercontinuum generation in bandgap engineered, back-end CMOS compatible silicon rich nitride waveguides[J]. Laser &Photonics Reviews, 2015, 9(5): 498-506.
    [105]
    CHOI J W, CHEN G F R, NG D K T, et al. Wideband nonlinear spectral broadening in ultra-short ultra - silicon rich nitride waveguides[J]. Scientific Reports, 2016, 6: 27120. doi: 10.1038/srep27120
    [106]
    LIU X, PU M H, ZHOU B B, et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide[J]. Optics Letters, 2016, 41(12): 2719-2722. doi: 10.1364/OL.41.002719
    [107]
    YE ZH CH, FÜLÖP A, HELGASON Ó B, et al. Low-loss high-Q silicon-rich silicon nitride microresonators for Kerr nonlinear optics[J]. Optics Letters, 2019, 44(13): 3326-3329. doi: 10.1364/OL.44.003326
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(4041) PDF downloads(863) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return