Volume 14 Issue 6
Nov.  2021
Turn off MathJax
Article Contents
WANG Lu-yu, LI Yu-qiong, CAI Rong. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 2021, 14(6): 1426-1434. doi: 10.37188/CO.2021-0045
Citation: WANG Lu-yu, LI Yu-qiong, CAI Rong. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 2021, 14(6): 1426-1434. doi: 10.37188/CO.2021-0045

Noise suppression of laser jitter in space laser interferometer

doi: 10.37188/CO.2021-0045
Funds:  Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018024); the National Natural Science Foundation of China (No. 61575209); the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA17020103)
More Information
  • In the “Taiji mission”, the laser jitter noise caused by satellite jitter is one of the main noise sources that affect the accuracy of laser interferometer. In order to ensure the measurement accuracy, the noise must be suppressed to 10 nrad/$\sqrt{{\rm{Hz}}} $@10 mHz. Firstly, an angle sensor composed of a four-quadrant photodetector and a phase meter was used to measure the angle signal, and a Mach-Zehnder interferometer combined with proportional-integral-derivative control technology was used to build a ground-based laser jitter noise suppression system. Secondly, the feedback control capability of the system and the effectiveness of the system to suppress laser jitter noise were analyzed. The experimental results showed that the system could effectively suppress the laser jitter noise, and the laser jitter noise was <4 nrad/$\sqrt{{\rm{Hz}}} $@10 mHz. The experiment advanced the study of the “Taiji mission” on the level of laser jitter noise suppression, which laid a physical experimental foundation for laser interferometry.

     

  • loading
  • [1]
    PITKIN M, REID S, ROWAN S, et al. Gravitational wave detection by interferometry (ground and space)[J]. Living Reviews in Relativity, 2011, 14: 5. doi: 10.12942/lrr-2011-5
    [2]
    HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. doi: 10.1093/nsr/nwx116
    [3]
    罗子人, 张敏, 靳刚. 激光干涉引力波空间阵列核心问题的综合讨论[J]. 科学通报,2019,64(24):2468-2474. doi: 10.1360/TB-2019-0055

    LUO Z R, ZHANG M, JIN G. Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna[J]. Chinese Science Bulletin, 2019, 64(24): 2468-2474. (in Chinese) doi: 10.1360/TB-2019-0055
    [4]
    LI Y Q, LUO Z R, LIU H SH, et al. Laser interferometer for space gravitational waves detection and earth gravity mapping[J]. Microgravity Science and Technology, 2018, 30(6): 817-829. doi: 10.1007/s12217-018-9624-7
    [5]
    刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学,2019,12(3):486-492. doi: 10.3788/co.20191203.0486

    LIU H SH, GAO R H, LUO Z R, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) doi: 10.3788/co.20191203.0486
    [6]
    董玉辉. 面向空间激光干涉引力波探测的精密指向和弱光锁相控制技术的研究[D]. 北京: 中国科学院大学, 2015.

    DONG Y H. Inter-satellite interferometry: fine pointing and weak-light phase-locking techniques for space gravitational wave observatory[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [7]
    高瑞弘, 刘河山, 罗子人, 等. 太极计划激光指向调控方案介绍[J]. 中国光学,2019,12(3):425-431. doi: 10.3788/co.20191203.0425

    GAO R H, LIU H SH, LOU Z R, et al. Introduction of laser pointing scheme in the Taiji program[J]. Chinese Optics, 2019, 12(3): 425-431. (in Chinese) doi: 10.3788/co.20191203.0425
    [8]
    梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学,2016,9(1):16-29. doi: 10.3788/co.20160901.0016

    LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-29. (in Chinese) doi: 10.3788/co.20160901.0016
    [9]
    LUO Z R, WANG Q L, MAHRDT C, et al. Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission[J]. Applied Optics, 2017, 56(5): 1495-1500. doi: 10.1364/AO.56.001495
    [10]
    WUCHENICH D M R, MAHRDT C, SHEARD B S, et al. Laser link acquisition demonstration for the GRACE Follow-on mission[J]. Optics Express, 2014, 22(9): 11351-11366. doi: 10.1364/OE.22.011351
    [11]
    罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报,2020,7(1):3-10.

    LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10. (in Chinese)
    [12]
    JIN G. Program in space detection of gravitational wave in Chinese Academy of Sciences[J]. Journal of Physics:Conference Series, 2017, 840: 012009. doi: 10.1088/1742-6596/840/1/012009
    [13]
    黄双林, 龚雪飞, 徐鹏, 等. 空间引力波探测——天文学的一个新窗口[J]. 中国科学: 物理学 力学 天文学,2017,47(1):010404.

    HUANG SH L, GONG X F, XU P, et al. Gravitational wave detection in space——a new window in astronomy[J]. SCIENTIA SINICA Physica,Mechanica &Astronomica, 2017, 47(1): 010404. (in Chinese)
    [14]
    胡文瑞. 空间引力波探测方案的探讨[J]. 科技导报,2018,36(12):1.

    HU W R. An investigation on the mission design of the space-borne gravitational wave detection[J]. Science &Technology Review, 2018, 36(12): 1. (in Chinese)
    [15]
    刘志国, 朴云松, 乔从丰. 多波段引力波宇宙研究和空间太极计划[J]. 现代物理知识,2016,28(5):28-33.

    LIU ZH G, PU Y S, QIAO C F. Multi-band gravitational wave cosmic research and the Taiji program of space[J]. Modern Physics Knowledge, 2016, 28(5): 28-33. (in Chinese)
    [16]
    邓剑峰, 蔡志鸣, 陈琨, 等. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学,2019,12(3):503-514. doi: 10.3788/co.20191203.0503

    DENG J F, CAI ZH M, CHEN K, et al. Drag-free control and its application in China’s space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503-514. (in Chinese) doi: 10.3788/co.20191203.0503
    [17]
    HYDE T T, MAGHAMI P. Precision pointing for the laser interferometry space antenna mission[J]. Advances in the Astronautical Sciences, 2003, 113: 497-508.
    [18]
    HECHENBLAIKNER G. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer[J]. Journal of the Optical Society of America A, 2010, 27(9): 2078-2083. doi: 10.1364/JOSAA.27.002078
    [19]
    SHEARD B S, HEINZEL G, DANZMANN K, et al. Intersatellite laser ranging instrument for the GRACE Follow-on mission[J]. Journal of Geodesy, 2012, 86(12): 1083-1095. doi: 10.1007/s00190-012-0566-3
    [20]
    WANNER G, HEINZEL G, KOCHKINA E, et al. Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams[J]. Optics Communications, 2012, 285(24): 4831-4839. doi: 10.1016/j.optcom.2012.07.123
    [21]
    HEINZEL G, RÜDIGER A, SCHILLING R, et al. Automatic beam alignment in the Garching 30 m prototype of a laser-interferometric gravitational wave detector[J]. Optics Communications, 1999, 160(4-6): 321-334. doi: 10.1016/S0030-4018(98)00654-3
    [22]
    刘河山. 面向空间引力波探测的激光差分干涉相位计研究[D]. 北京: 中国科学院大学, 2015.

    LIU H SH. The research on phasemeter of heterodyne laser interferometry for the space gravitational wave detection[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [23]
    LI Y Q, WANG CH Y, WANG L Y, et al. A laser interferometer prototype with pico-meter measurement precision for Taiji space gravitational wave detection missionin China[J]. Microgravity Science and Technology, 2020, 32(3): 331-338. doi: 10.1007/s12217-019-09769-9
    [24]
    李日忠, 黄俊斌, 秦石乔. 四象限光电探测器象限间一致性测量方法[J]. 传感技术学报,2006,19(6):2610-2612.

    LI R ZH, HUANG J B, QIN SH Q. Measuring the response coherence between the four quadrants of quadrant photo detector[J]. Chinese Journal of Sensors and Actuators, 2006, 19(6): 2610-2612. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1305) PDF downloads(149) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return