Volume 14 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
SUN Zhi-guo, WU Ye, WEI Chang-ting, GENG Dong-ling, LI Xiao-ming, ZENG Hai-bo. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling[J]. Chinese Optics, 2021, 14(1): 77-86. doi: 10.37188/CO.2020-0060
Citation: SUN Zhi-guo, WU Ye, WEI Chang-ting, GENG Dong-ling, LI Xiao-ming, ZENG Hai-bo. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling[J]. Chinese Optics, 2021, 14(1): 77-86. doi: 10.37188/CO.2020-0060

Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+ doping and halogen vacancy filling

doi: 10.37188/CO.2020-0060
Funds:  Supported by Young Elite Scientists Sponsorship Program by CAST (No. 2018QNRC001), National Natural Science Foundation of China (No. 61874054, No. 51902160), Natural Science Foundation of Jiangsu Province (No. BK20180489), Fundamental Research Funds for the Central Universities (No. 30918011208), National Natural Science Funds for Distinguished Young Scholar (No. 61725402)
More Information
  • Lead Halide Perovskites(LHPs) are promising candidates for next-generation optoelectronic application. However, defect-induced ion migration causes phase degradation in LHP nanocrystals. Therefore, material stability has become an urgent problem that impedes practical applications. In this paper, we aim to study the influence of doping cations on inhibiting the migration of halogen ions in perovskite nanocrystals. Through the measurement of ion migration activation energy and in-situ high-resolution transmission electron microscope technology, the effect of precursor dopants on the stability of LHPs were analyzed. Firstly, we synthesized two types of LHP nanocrystals with high crystal quality using nickel acetylacetonate and nickel bromide as precursor dopants, respectively. Secondly, the optical properties and component elements of the doped samples were analyzed by absorption-fluorescence spectroscopy, X-ray diffraction, X-ray photoelectron diffraction, and transmission electron microscopy. Finally, the ion migration activation energies of various LHP films were measured using temperature-dependent ion conductivity tests, and the influence of the precursor dopants on the stability of as-synthesized doped LHPs was compared with the results from high-resolution electron microscopy. The results showed that the activation energies of the doped CsPbBr3 samples were significantly improved compared to the intrinsic CsPbBr3 sample (0.07 eV), which were determined to be 0.238 eV for nickel acetylacetonate and 0.487 eV for nickel bromide. In addition, the electron irradiation experiments showed that the nickel bromide-doped perovskite nanocrystals exhibited higher structural stability. This is due to the strong bonding of doped Ni2+ to halogen and the synergistic passivation effect of halogen filling vacancy defects. It can be concluded that Ni2+ doping and halogen vacancy filling can effectively inhibit ion migration in halide perovskite nanocrystals.

     

  • loading
  • [1]
    KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r
    [2]
    YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. doi: 10.1126/science.aaa9272
    [3]
    SONG J ZH, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567
    [4]
    LI X, BI D Q, YI CH Y, et al. A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells[J]. Science, 2016, 353(6294): 58-62. doi: 10.1126/science.aaf8060
    [5]
    JEON N J, NA H, JUNG E H, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells[J]. Nature Energy, 2018, 3(8): 682-689. doi: 10.1038/s41560-018-0200-6
    [6]
    JUNG E H, JEON N J, PARK E Y, et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)[J]. Nature, 2019, 567(7749): 511-515. doi: 10.1038/s41586-019-1036-3
    [7]
    MOMBLONA C, GIL-ESCRIG L, BANDIELLO E, et al. Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers[J]. Energy &Environmental Science, 2016, 9(11): 3456-3463.
    [8]
    TAN H R, JAIN A, VOZNYY O, et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation[J]. Science, 2017, 355(6326): 722-726. doi: 10.1126/science.aai9081
    [9]
    TRESS W, MARINOVA N, MOEHL T, et al. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field[J]. Energy &Environmental Science, 2015, 8(3): 995-1004.
    [10]
    MCMEEKIN D P, SADOUGHI G, REHMAN W, et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells[J]. Science, 2016, 351(6269): 151-155. doi: 10.1126/science.aad5845
    [11]
    CHEN M M, SHAN X, GESKE T, et al. Manipulating ion migration for highly stable light-emitting diodes with single-crystalline organometal halide perovskite microplatelets[J]. ACS Nano, 2017, 11(6): 6312-6318. doi: 10.1021/acsnano.7b02629
    [12]
    DEQUILETTES D W, ZHANG W, BURLAKOV V M, et al. Photo-induced halide redistribution in organic-inorganic perovskite films[J]. Nature Communications, 2016, 7: 11683. doi: 10.1038/ncomms11683
    [13]
    EAMES C, FROST J M, BARNES P R F, et al. Ionic transport in hybrid lead iodide perovskite solar cells[J]. Nature Communications, 2015, 6: 7497. doi: 10.1038/ncomms8497
    [14]
    LI CH, GUERRERO A, HUETTNER S, et al. Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence[J]. Nature Communications, 2018, 9(1): 5113. doi: 10.1038/s41467-018-07571-6
    [15]
    LAI M L, OBLIGER A, LU D, et al. Intrinsic anion diffusivity in lead halide perovskites is facilitated by a soft lattice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11929-11934. doi: 10.1073/pnas.1812718115
    [16]
    SHAO Y CH, FANG Y J, LI T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films[J]. Energy &Environmental Science, 2016, 9(5): 1752-1759.
    [17]
    YUN J S, SEIDEL J, KIM J, et al. Critical role of grain boundaries for ion migration in formamidinium and methylammonium lead halide perovskite solar cells[J]. Advanced Energy Materials, 2016, 6(13): 1600330. doi: 10.1002/aenm.201600330
    [18]
    YUAN Y B, CHAE J, SHAO Y CH, et al. Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells[J]. Advanced Energy Materials, 2015, 5(15): 1500615. doi: 10.1002/aenm.201500615
    [19]
    VASHISHTHA P, HALPERT J E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes[J]. Chemistry of Materials, 2017, 29(14): 5965-5973. doi: 10.1021/acs.chemmater.7b01609
    [20]
    ZHANG H CH, FU X, TANG Y, et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals[J]. Nature Communications, 2019, 10(1): 1088. doi: 10.1038/s41467-019-09047-7
    [21]
    CAO J, TAO SH X, BOBBERT P A, et al. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration[J]. Advanced Materials, 2018, 30(26): 1707350. doi: 10.1002/adma.201707350
    [22]
    XING J, WANG Q, DONG Q F, et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals[J]. Physical Chemistry Chemical Physics, 2016, 18(44): 30484-30490. doi: 10.1039/C6CP06496E
    [23]
    CHEN SH L, ZHANG X W, ZHAO J J, et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite[J]. Nature Communications, 2018, 9(1): 4807. doi: 10.1038/s41467-018-07177-y
    [24]
    WEI D, MA F SH, WANG R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells[J]. Advanced Materials, 2018, 30(31): 1707583. doi: 10.1002/adma.201707583
    [25]
    ZHANG X Y, LU M, ZHANG Y, et al. PbS capped CsPbI3 nanocrystals for efficient and stable light-emitting devices using p-i-n structures[J]. ACS Central Science, 2018, 4(10): 1352-1359. doi: 10.1021/acscentsci.8b00386
    [26]
    WANG CH J, CHESMAN A S R, JASIENIAK J J. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid[J]. Chemical Communications, 2017, 53(1): 232-235. doi: 10.1039/C6CC08282C
    [27]
    LIN Y, BAI Y, FANG Y J, et al. Suppressed ion migration in low-dimensional perovskites[J]. ACS Energy Letters, 2017, 2(7): 1571-1572. doi: 10.1021/acsenergylett.7b00442
    [28]
    WANG X, LING Y CH, LIAN X J, et al. Suppressed phase separation of mixed-halide perovskites confined in endotaxial matrices[J]. Nature Communications, 2019, 10(1): 695. doi: 10.1038/s41467-019-08610-6
    [29]
    XING J, ZHAO Y B, ASKERKA M, et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes[J]. Nature Communications, 2018, 9(1): 3541. doi: 10.1038/s41467-018-05909-8
    [30]
    ZOU SH H, LIU Y SH, LI J H, et al. Stabilizing cesium lead halide perovskite lattice through MN(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society, 2017, 139(33): 11443-11450. doi: 10.1021/jacs.7b04000
    [31]
    PAROBEK D, ROMAN B J, DONG Y T, et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12): 7376-7380. doi: 10.1021/acs.nanolett.6b02772
    [32]
    BI CH H, WANG SH X, LI Q, et al. Thermally stable copper(Ⅱ)-doped cesium lead halide perovskite quantum dots with strong blue emission[J]. The Journal of Physical Chemistry Letters, 2019, 10(5): 943-952. doi: 10.1021/acs.jpclett.9b00290
    [33]
    YUAN X, JI S H, DE SIENA M C, et al. Photoluminescence temperature dependence, dynamics, and quantum efficiencies in Mn2+-doped CsPbCl3 perovskite nanocrystals with varied dopant concentration[J]. Chemistry of Materials, 2017, 29(18): 8003-8011. doi: 10.1021/acs.chemmater.7b03311
    [34]
    YAO J S, GE J, HAN B N, et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes[J]. Journal of the American Chemical Society, 2018, 140(10): 3626-3634. doi: 10.1021/jacs.7b11955
    [35]
    PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties[J]. Nano Letters, 2017, 17(12): 8005-8011. doi: 10.1021/acs.nanolett.7b04575
    [36]
    HU Y Q, BAI F, LIU X B, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells[J]. ACS Energy Letters, 2017, 2(10): 2219-2227. doi: 10.1021/acsenergylett.7b00508
    [37]
    SAIDAMINOV M I, KIM J, JAIN A, et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air[J]. Nature Energy, 2018, 3(8): 648-654. doi: 10.1038/s41560-018-0192-2
    [38]
    LIU W Y, LIN Q L, LI H B, et al. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45): 14954-14961. doi: 10.1021/jacs.6b08085
    [39]
    YONG Z J, GUO SH Q, MA J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield[J]. Journal of the American Chemical Society, 2018, 140(31): 9942-9951. doi: 10.1021/jacs.8b04763
    [40]
    ZHANG X T, WANG H, HU Y, et al. Strong blue emission from Sb3+-doped super small CsPbBr3 nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1750-1756. doi: 10.1021/acs.jpclett.9b00790
    [41]
    MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J]. ACS Energy Letters, 2019, 4(1): 32-39. doi: 10.1021/acsenergylett.8b01909
    [42]
    BEHERA R K, DAS ADHIKARI S, DUTTA S K, et al. Blue-emitting CsPbCl3 nanocrystals: impact of surface passivation for unprecedented enhancement and loss of optical emission[J]. The Journal of Physical Chemistry Letters, 2018, 9(23): 6884-6891. doi: 10.1021/acs.jpclett.8b03047
    [43]
    KOVALENKO M V, PROTESESCU L, BODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals[J]. Science, 2017, 358(6364): 745-750. doi: 10.1126/science.aam7093
    [44]
    AKKERMAN Q A, RAINÒ G, KOVALENKO M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J]. Nature Materials, 2018, 17(5): 394-405. doi: 10.1038/s41563-018-0018-4
    [45]
    KIM G Y, SENOCRATE A, YANG T Y, et al. Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition[J]. Nature Materials, 2018, 17(5): 445-449. doi: 10.1038/s41563-018-0038-0
    [46]
    CALADO P, TELFORD A M, BRYANT D, et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis[J]. Nature Communications, 2016, 7: 13831. doi: 10.1038/ncomms13831
    [47]
    ZHU X Y, PODZOROV V. Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons[J]. The Journal of Physical Chemistry Letters, 2015, 6(23): 4758-4761. doi: 10.1021/acs.jpclett.5b02462
    [48]
    MIYATA K, MEGGIOLARO D, TRINH M T, et al. Large polarons in lead halide perovskites[J]. Science Advances, 2017, 3(8): 1701217. doi: 10.1126/sciadv.1701217
    [49]
    MAHATA A, MEGGIOLARO D, DE ANGELIS F. From large to small polarons in lead, tin, and mixed lead-tin halide perovskites[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1790-1798. doi: 10.1021/acs.jpclett.9b00422
    [50]
    PARK M, NEUKIRCH A J, REYES-LILLO S E, et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite[J]. Nature Communications, 2018, 9: 2525. doi: 10.1038/s41467-018-04946-7
    [51]
    BEAULAC R, SCHNEIDER L, ARCHER P I, et al. Light-induced spontaneous magnetization in doped colloidal quantum dots[J]. Science, 2009, 325(5943): 973-976. doi: 10.1126/science.1174419
    [52]
    HOFFMAN D M, MEYER B K, EKIMOV A I, et al. Giant internal magnetic fields in Mn doped nanocrystal quantum dots[J]. Solid State Communications, 2000, 114(10): 547-550. doi: 10.1016/S0038-1098(00)00089-2
    [53]
    符靓, 施树云, 陈晓青. 电感耦合等离子体-质谱法测定高纯四甲基氢氧化铵中超痕量金属元素[J]. 分析化学,2018,46(1):107-112.

    FU L, SHI SH Y, CHEN X Q. Ultra-trace metal elements analysis of high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(1): 107-112. (in Chinese)
    [54]
    陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学,2019,47(3):403-409.

    CHEN W, FAN X W, GUO C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409. (in Chinese)
    [55]
    WANG Y Y, WU M W. Control of spin coherence in semiconductor double quantum dots[J]. Physical Review B, 2008, 77(12): 125323. doi: 10.1103/PhysRevB.77.125323
    [56]
    HUANG G G, WANG CH L, XU SH H, et al. Postsynthetic doping of MnCl2 molecules into preformed CsPbBr3 perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Advanced Materials, 2017, 29(29): 1700095. doi: 10.1002/adma.201700095
    [57]
    XU K Y, LIN CH CH, XIE X B, et al. Efficient and stable luminescence from Mn2+ in core and core-isocrystalline shell CsPbCl3 perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10): 4265-4272. doi: 10.1021/acs.chemmater.7b00345
    [58]
    LIU M, ZHONG G H, YIN Y M, et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight[J]. Advanced Science, 2017, 4(11): 1700335. doi: 10.1002/advs.201700335
    [59]
    ZHOU D L, LIU D L, PAN G CH, et al. Cerium and ytterbium codoped halide perovskite quantum dots: a novel and efficient downconverter for improving the performance of silicon solar cells[J]. Advanced Materials, 2017, 29(42): 1704149. doi: 10.1002/adma.201704149
    [60]
    尹子辰, 王彦玲, 张传保. 羟丙基胍胶在高岭土上的吸附性质研究[J]. 分析化学,2019,47(1):93-98.

    YIN Z CH, WANG Y L, ZHANG CH B. Study of adsorption behavior of hydroxypropyl guar gum on kaolin[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 93-98. (in Chinese)
    [61]
    ISHIKAWA R, MISHRA R, LUPINI A R, et al. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch[J]. Physical Review Letters, 2014, 113(15): 155501. doi: 10.1103/PhysRevLett.113.155501
    [62]
    BRENNAN M C, DRAGUTA S, KAMAT P V, et al. Light-induced anion phase segregation in mixed halide perovskites[J]. ACS Energy Letters, 2018, 3(1): 204-213. doi: 10.1021/acsenergylett.7b01151
    [63]
    LI W, ROTHMANN M U, LIU A, et al. Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells[J]. Advanced Energy Materials, 2017, 7(20): 1700946. doi: 10.1002/aenm.201700946
    [64]
    MIZUSAKI J, ARAI K, FUEKI K. Ionic conduction of the perovskite-type halides[J]. Solid State Ionics, 1983, 11(3): 203-211. doi: 10.1016/0167-2738(83)90025-5
    [65]
    O’REGAN B C, BARNES P R F, LI X E, et al. Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis[J]. Journal of the American Chemical Society, 2015, 137(15): 5087-5099. doi: 10.1021/jacs.5b00761
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article views(2652) PDF downloads(186) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return