留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面天线在场效应晶体管太赫兹探测器中的应用

王晓东 颜伟 李兆峰 张博文 黄镇 杨富华

王晓东, 颜伟, 李兆峰, 张博文, 黄镇, 杨富华. 平面天线在场效应晶体管太赫兹探测器中的应用[J]. 中国光学(中英文), 2020, 13(1): 1-13. doi: 10.3788/CO.20201301.0001
引用本文: 王晓东, 颜伟, 李兆峰, 张博文, 黄镇, 杨富华. 平面天线在场效应晶体管太赫兹探测器中的应用[J]. 中国光学(中英文), 2020, 13(1): 1-13. doi: 10.3788/CO.20201301.0001
WANG Xiao-Dong, YAN Wei, LI Zhao-feng, ZHANG Bo-wen, HUANG Zhen, YANG Fu-hua. Application of planar antenna in field-effect transistor terahertz detectors[J]. Chinese Optics, 2020, 13(1): 1-13. doi: 10.3788/CO.20201301.0001
Citation: WANG Xiao-Dong, YAN Wei, LI Zhao-feng, ZHANG Bo-wen, HUANG Zhen, YANG Fu-hua. Application of planar antenna in field-effect transistor terahertz detectors[J]. Chinese Optics, 2020, 13(1): 1-13. doi: 10.3788/CO.20201301.0001

平面天线在场效应晶体管太赫兹探测器中的应用

doi: 10.3788/CO.20201301.0001
基金项目: 

国家重点研发专项基金 No. 2016YFA02005003

国家自然科学基金 No. 61474115

详细信息
    作者简介:

    王晓东(1972-), 男, 山东莒县人, 研究员, 博士生导师, 中国科学院半导体所集成中心主任, 主要从事半导体微纳器件技术, 纳米热电结构与器件, 高效叠层太阳电池。E-mail:xdwang@semi.ac.cn

    颜伟(1984—),男,辽宁盘锦人,博士,助理研究员,主要从事集成平面天线GaN/AlGaN HEMT太赫兹探测器的研究。 E-mail:yanwei@semi.ac.cn

    李兆峰(1976—),男,江苏淮安人,研究员,硕士生导师,主要从事纳米光学与光电子学,特异材料,表面等离子体,光子晶体,微纳光学,太赫兹,MEMS器件等的研究。 E-mail:lizhaofeng@semi.ac.cn

    黄镇(1993—),男,湖北武汉人,博士研究生,主要从事集成平面天线GaN/AlGaN HEMT太赫兹探测器的研究。 E-mail:zhenhuang@semi.ac.cn

  • 中图分类号: TN827+.2

Application of planar antenna in field-effect transistor terahertz detectors

Funds: 

Supported by National Key Research and Development Fund No. 2016YFA02005003

Natural Science Foundation of China No. 61474115

More Information
  • 摘要: 为了提高场效应晶体管太赫兹探测器的响应度并降低噪声等效功率,需要对探测器集成平面天线的结构进行合理设计与优化,本文对集成平面天线结构的场效应晶体管太赫兹探测器的研究进行了深入调研。首先,对场效应晶体管太赫兹探测器的工作原理进行了分析,介绍了集成平面天线如何解决耦合太赫兹波效率低的问题。然后,介绍了一些常用的平面天线结构,包括偶极子天线、贴片天线、缝隙天线、grating-gate和其他类型的结构,比较了各种天线的性能以及引入后对太赫兹探测器响应度的影响。通过对比不同天线结构的探测器响应度和噪声等效功率等参数指标,发现:采用平面天线结构之后,场效应晶体管太赫兹探测器的响应度有了大幅度的提升,各种类型的天线对探测器响应度都有不同程度的提升。本文着重介绍了几种集成于场效应晶体管的平面天线结构,包括各种天线的性能和研究进展,最后分析了场效应晶体管太赫兹探测器存在的问题和发展趋势。

     

  • 图 1  场效应晶体管太赫兹探测器结构示意图

    Figure 1.  Schematic diagram of FET terahertz detector

    图 2  接收天线的等效电路图

    Figure 2.  Equivalent circuit diagram of the receiving antenna

    图 3  自混频探测理论示意图(图片引自文献[19],AIP已授权)

    Figure 3.  Schematic of self-mixing theory(reproduced from ref.[19], with the permission of AIP publishing)

    图 4  蝶形天线结构

    Figure 4.  Bow-tie antenna

    图 5  螺旋形天线结构

    Figure 5.  Spiral antenna

    图 6  对数周期天线结构

    Figure 6.  Log-periodic antenna

    图 7  缝隙天线结构

    Figure 7.  Slot antenna

    图 8  贴片天线结构

    Figure 8.  Patch antenna

    图 9  Grating-gate结构

    Figure 9.  Grating-gate structure

  • [1] DYAKONOV M, SHUR M. Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current[J]. Physical Review Letters, 1993, 71(15): 2465-2468. doi: 10.1103/PhysRevLett.71.2465
    [2] DYAKONOV M, SHUR M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(3): 380-387. doi: 10.1109/16.485650
    [3] DYAKONOV M I, SHUR M S. Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1640-1645. doi: 10.1109/16.536809
    [4] LU J Q, SHUR M A, WEIKLE R M, et al.Detection of microwave radiation by electronic fluid in AlGaN/GaN heterostructure field effect transistors[C]. Proceedings of 1997 IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits, IEEE, 1997: 211-217.
    [5] EL FATIMY A, TOMBET S B, TEPPE F, et al.Terahertz detection by GaN/AlGaN transistors[J]. Electronics Letters, 2006, 42(23): 1342-1344. doi: 10.1049/el:20062452
    [6] BROWN E R, MCINTOSH K A, NICHOLS K B, et al.Photomixing up to 3.8 THz in low-temperature-grown GaAs[J]. Applied Physics Letters, 1995, 66(3): 285-287. doi: 10.1063/1.113519
    [7] LU J Q, SHUR M S, HESLER J L, et al.Terahertz detector utilizing two-dimensional electronic fluid[J]. IEEE Electron Device Letters, 1998, 19(10): 373-375. doi: 10.1109/55.720190
    [8] LV J Q, SHUR M S. Terahertz detection by high-electron-mobility transistor: enhancement by drain bias[J]. Applied Physics Letters, 2001, 78(17): 2587-2588. doi: 10.1063/1.1367289
    [9] KNAP W, DENG Y, RUMYANTSEV S, et al.Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor[J]. Applied Physics Letters, 2002, 80(18): 3433-3435. doi: 10.1063/1.1473685
    [10] KNAP W, DENG Y, RUMYANTSEV S, et al.Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors[J]. Applied Physics Letters, 2002, 81(24): 4637-4639. doi: 10.1063/1.1525851
    [11] KNAP W, KACHOROVSKⅡ V, DENG Y, et al.Nonresonant detection of terahertz radiation in field effect transistors[J]. Journal of Applied Physics, 2002, 91(11): 9346-9353. doi: 10.1063/1.1468257
    [12] KNAP W, DYAKONOV M, COQUILLAT D, et al.Field effect transistors for terahertz detection: physics and first imaging applications[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(12): 1319-1337. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0907.2523
    [13] KOPYT P, MARCZEWSKI J, KUCHARSKI K, et al.Planar antennas for THz radiation detector based on a MOSFET[C]. Proceedings of 2011 International Conference on Infrared, Millimeter, and Terahertz Waves, IEEE, 2011: 1-2.
    [14] 孙建东.室温高灵敏度场效应自混频太赫兹波检测器[D].苏州: 中国科学院大学苏州纳米技术与纳米仿生研究所, 2012.

    SUN J D. High-responsivity, room-temperature, self-mixing terahertz detectors based on high-electron-mobility field-effect transistor[D]. Suzhou: Graduate University of the Chinese Academy of Sciences, 2012. (in Chinese)
    [15] ZHANG B W, YAN W, LI ZH F, et al.Analysis of substrate effect in field effect transistor terahertz detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8500607. http://cn.bing.com/academic/profile?id=68cf64539602e5b17ae4a95cd767215e&encoded=0&v=paper_preview&mkt=zh-cn
    [16] LISAUSKAS A, PFEIFFER U, ÖJEFORS E, et al.Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors[J]. Journal of Applied Physics, 2009, 105(11): 114511. doi: 10.1063/1.3140611
    [17] 孙建冬, 孙云飞, 周宇, 等.蝶形天线增强的HEMT室温太赫兹探测器[J].微纳电子技术, 2011, 48(8): 215-219. http://d.old.wanfangdata.com.cn/Periodical/wndzjs201104002

    SUN J D, SUN Y F, ZHOU Y, et al.Room temperature terahertz detectors based on HEMTs enhanced by bowtie antennas[J]. Micronanoelectronic Technology, 2011, 48(8): 215-219. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wndzjs201104002
    [18] SUN J D, SUN Y F, ZHOU Y, et al.A terahertz detector based on AlGaN/GaN high electron mobility transistor with bowtie antennas[J]. AIP Conference Proceedings, 2011, 1399(1): 893-894. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212110879
    [19] SUN J D, SUN Y F, WU D M, et al.High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor[J]. Applied Physics Letters, 2012, 100(1): 013506. doi: 10.1063/1.3673617
    [20] BAUER M, LISAUSKAS A, BOPPEL S, et al.Bow-tie-antenna-coupled terahertz detectors using AlGaN/GaN field-effect transistors with 0.25 micrometer gate length[C]. Proceedings of 2013 European Microwave Integrated Circuit Conference, IEEE, 2013: 212-215.
    [21] PFEIFFER U R, OJEFORS E. A 600-GHz CMOS focal-plane array for terahertz imaging applications[C]. Proceedings of ESSCIRC 2008-34th European Solid-State Circuits Conference, IEEE, 2008: 110-113.
    [22] BAUER M, RÄMER A, BOPPEL S, et al.High-sensitivity wideband THz detectors based on GaN HEMTs with integrated bow-tie antennas[C]. Proceedings of 2015 10th European Microwave Integrated Circuits Conference, IEEE, 2015: 1-4.
    [23] BOPPEL S, LISAUSKAS A, MUNDT M, et al.CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(12): 3834-3843. doi: 10.1109/TMTT.2012.2221732
    [24] GUO W L, WANG L, CHEN X SH, et al.Graphene-based broadband terahertz detector integrated with a square-spiral antenna[J]. Optics Letters, 2018, 43(8): 1647-1650. doi: 10.1364/OL.43.001647
    [25] SPIRITO D, COQUILLAT D, DE BONIS S L, et al.High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111. doi: 10.1063/1.4864082
    [26] TONG J Y, MUTHEE M, CHEN S Y, et al.Antenna enhanced graphene THz emitter and detector[J]. Nano Letters, 2015, 15(8): 5295-5301. doi: 10.1021/acs.nanolett.5b01635
    [27] YANG X X, VOROBIEV A, GENERALOV A, et al.A flexible graphene terahertz detector[J]. Applied Physics Letters, 2017, 111(2): 021102. doi: 10.1063/1.4993434
    [28] IKAMAS K, IBIRAIT E · D, LISAUSKAS A, et al.Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz[J]. IEEE Electron Device Letters, 2018, 39(9): 1413-1416. doi: 10.1109/LED.2018.2859300
    [29] DYER G C, VINH N Q, ALLEN S J, et al.A terahertz plasmon cavity detector[J]. Applied Physics Letters, 2010, 97(19): 193507. doi: 10.1063/1.3513339
    [30] DYER G C, AIZIN G R, RENO J L, et al.Novel tunable millimeter-wave grating-gated plasmonic detectors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 85-91. doi: 10.1109/JSTQE.2010.2049096
    [31] KIM S, ZIMMERMAN J D, FOCARDI P, et al.Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors[J]. Applied Physics Letters, 2008, 92(25): 253508. doi: 10.1063/1.2947587
    [32] VICARELLI L, VITIELLO M S, COQUILLAT D, et al.Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature Materials, 2012, 11(10): 865-871. doi: 10.1038/nmat3417
    [33] XU L J, TONG F CH, BAI X, et al.Design of miniaturised on-chip slot antenna for THz detector in CMOS[J]. IET Microwaves, Antennas & Propagation, 2018, 12(8): 1324-1331. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5e752ff86b56a95bc21ff2525cf0071
    [34] TANIGAWA T, ONISHI T, IMAFUJI O, et al.AlGaN/GaN plasmon-resonant terahertz detectors with on-chip patch antennas[C]. Proceedings of 2009 Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA, 2009: CThFF7.
    [35] BOPPEL S, LISAUSKAS A, KROZER V, et al.Performance and performance variations of sub-1 THz detectors fabricated with 0.15 μm CMOS foundry process[J]. Electronics Letters, 2011, 47(11): 661-662. doi: 10.1049/el.2011.0687
    [36] LIU ZH Y, LIU L Y, YANG J, et al.A CMOS fully integrated 860-GHz terahertz sensor[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(4): 455-465. doi: 10.1109/TTHZ.2017.2692040
    [37] KEAY B J, ZEUNER S, ALLEN JR S J, et al.Dynamic localization, absolute negative conductance, and stimulated, multiphoton emission in sequential resonant tunneling semiconductor superlattices[J]. Physical Review Letters, 1995, 75(22): 4102-4105. doi: 10.1103/PhysRevLett.75.4102
    [38] DREXLER H, SCOTT J S, ALLEN S J, et al.Photon-assisted tunneling in a resonant tunneling diode: stimulated emission and absorption in the THz range[J]. Applied Physics Letters, 1995, 67(19): 2816-2818. doi: 10.1063/1.114794
    [39] PERALTA X G, ALLEN S J, WANKE M C, et al.Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors[J]. Applied Physics Letters, 2002, 81(9): 1627-1629. doi: 10.1063/1.1497433
    [40] POPOV V V, POLISCHUK O V, TEPERIK T V, et al.Absorption of terahertz radiation by plasmon modes in a grid-gated double-quantum-well field-effect transistor[J]. Journal of Applied Physics, 2003, 94(5): 3556-3562. doi: 10.1063/1.1599051
    [41] POPOV V V, POLISCHUK O V, SHUR M S. Resonant excitation of plasma oscillations in a partially gated two-dimensional electron layer[J]. Journal of Applied Physics, 2005, 98(3): 033510. doi: 10.1063/1.1954890
    [42] POPOV V V, TSYMBALOV G M, FATEEV D V, et al.Cooperative absorption of terahertz radiation by plasmon modes in an array of field-effect transistors with two-dimensional electron channel[J]. Applied Physics Letters, 2006, 89(12): 123504. doi: 10.1063/1.2356378
    [43] POPOV V V, SHUR M S, TSYMBALOV G M, et al.Higher-order plasmon resonances in GaN-based field-effect transistor arrays[J]. International Journal of High Speed Electronics and Systems, 2007, 17(3): 557-566. doi: 10.1142/S0129156407004746
    [44] POPOV V V, KOUDYMOV A N, SHUR M, et al.Tuning of ungated plasmons by a gate in the field-effect transistor with two-dimensional electron channel[J]. Journal of Applied Physics, 2008, 104(2): 024508. doi: 10.1063/1.2955731
    [45] POPOV V V, FATEEV D V, OTSUJI T, et al.Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell[J]. Applied Physics Letters, 2011, 99(24): 243504. doi: 10.1063/1.3670321
    [46] POPOV V V, PALA N, SHUR M S. Room temperature terahertz plasmonic detection by antenna arrays of field-effect transistors[J]. Nanoscience and Nanotechnology Letters, 2012, 4(10): 1015-1022. doi: 10.1166/nnl.2012.1442
    [47] TANIGAWA T, ONISHI T, TAKIGAWA S, et al.Enhanced responsivity in a novel AlGaN/GaN plasmon-resonant terahertz detector using gate-dipole antenna with parasitic elements[C]. Proceedings of the 68th Device Research Conference, IEEE, 2010: 167-168.
    [48] HOU H W, LIU ZH H, TENG J H, et al.A sub-terahertz broadband detector based on a GaN high-electron-mobility transistor with nanoantennas[J]. Applied Physics Express, 2017, 10(1): 014101. doi: 10.7567/APEX.10.014101
    [49] SUN Y F, SUN J D, ZHOU Y, et al.Room temperature GaN/AlGaN self-mixing terahertz detector enhanced by resonant antennas[J]. Applied Physics Letters, 2011, 98(25): 252103. doi: 10.1063/1.3601489
    [50] SUN J D, QIN H, LEWIS R A, et al.Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector[J]. Applied Physics Letters, 2012, 100(17): 173513. doi: 10.1063/1.4705306
    [51] HOU H W, LIU ZH H, TENG J H, et al.Modelling of GaN HEMTs as terahertz detectors based on self-mixing[J]. Procedia Engineering, 2016, 141: 98-102. doi: 10.1016/j.proeng.2015.09.225
  • 加载中
图(9)
计量
  • 文章访问数:  2746
  • HTML全文浏览量:  1367
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2019-06-08
  • 刊出日期:  2020-02-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!