留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅光子芯片外腔窄线宽半导体激光器

杜悦宁 陈超 秦莉 张星 陈泳屹 宁永强

杜悦宁, 陈超, 秦莉, 张星, 陈泳屹, 宁永强. 硅光子芯片外腔窄线宽半导体激光器[J]. 中国光学(中英文), 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229
引用本文: 杜悦宁, 陈超, 秦莉, 张星, 陈泳屹, 宁永强. 硅光子芯片外腔窄线宽半导体激光器[J]. 中国光学(中英文), 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229
DU Yue-ning, CHEN Chao, QIN Li, ZHANG Xing, CHEN Yong-yi, NING Yong-qiang. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229
Citation: DU Yue-ning, CHEN Chao, QIN Li, ZHANG Xing, CHEN Yong-yi, NING Yong-qiang. Narrow linewidth external cavity semiconductor laser based on silicon photonic chip[J]. Chinese Optics, 2019, 12(2): 229-241. doi: 10.3788/CO.20191202.0229

硅光子芯片外腔窄线宽半导体激光器

doi: 10.3788/CO.20191202.0229
基金项目: 

国家重点研发计划资助项目 2016YFE0126800

国家自然科学基金资助项目 61505206

国家自然科学基金资助项目 61674148

国家自然科学基金资助项目 51672264

国家自然科学基金资助项目 61727822

吉林省科技发展计划资助项目 20150520089JH

吉林省科技发展计划资助项目 20170204013GX

详细信息
    作者简介:

    杜悦宁(1993-), 女, 甘肃兰州人, 硕士研究生, 2015年于华中科技大学获得学士学位, 主要从事窄线宽半导体激光器方面的研究。E-mail:dynhhz@163.com

    陈超(1982-), 男, 内蒙古赤峰人, 博士, 助理研究员, 2014年于吉林大学获得博士学位, 主要从事窄线宽半导体激光器和微纳光子器件方面的研究。E-mail:chenc@ciomp.ac.cn

    秦莉(1969-), 女, 黑龙江鹤岗人, 博士, 研究员, 博士生导师, 1999年于吉林大学获得博士学位, 主要从事半导体激光技术及应用方面的研究。E-mail:qinl@ciomp.ac.cn

  • 中图分类号: TN248.4

Narrow linewidth external cavity semiconductor laser based on silicon photonic chip

Funds: 

National Key R&D Program of China 2016YFE0126800

National Natural Scienece Foundation of China 61505206

National Natural Scienece Foundation of China 61674148

National Natural Scienece Foundation of China 51672264

National Natural Scienece Foundation of China 61727822

Science and Technology Development Project of Jilin Province 20150520089JH

Science and Technology Development Project of Jilin Province 20170204013GX

More Information
  • 摘要: 随着超高速光互连、相干光通信、相干检测等技术的不断发展,对激光光源的线宽、相频噪声、可调谐性和稳定性等都提出了更为严格的要求。利用基于CMOS(Complementary Metal Oxide Semiconductor)工艺的硅光子芯片与半导体增益芯片各自的优势,将二者准单片集成实现结构紧凑、低功耗和高稳定性的窄线宽半导体激光器成为近年的研究热点。该结构可通过微环谐振器、环形反射镜和马赫曾德干涉仪等提供光反馈压窄线宽,并实现宽调谐范围和稳定功率输出。本文主要阐述了硅光子芯片外腔半导体激光器的最新研究进展,针对几种包含微环谐振器的结构进行了分类介绍,深入讨论了增加耦合效率和降低端面反射率等技术难题。针对未来空间光通信和光互连等应用前景,展望了该类激光器在功率提升和光子集成方面的未来发展方向。

     

  • 图 1  硅基Si3N4波导外腔窄线宽半导体激光器典型结构[15]

    Figure 1.  Typical structure of Si-based Si3N4 waveguide external cavity narrow linewidth semiconductor laser[15]

    图 2  (a) 激光器集成MRR和LR的外腔结构(b)波长选择示意图;(c)波长调谐示意图[20]

    Figure 2.  (a)External cavity structure of laser integrated MRR and LR; (b)wavelength selection; (c)wavelength tuning[20]

    图 3  (a) 硅光子线波导外腔半导体激光器结构示意图;(b)激光器波长调谐示意图[21]

    Figure 3.  (a)Schematic of the silicon base waveguide external cavity semiconductor laser; (b)schematic of laser wavelength tuning[21]

    图 4  (a) 波长可调谐激光器的结构示意图;(b)双环谐振器的波长调谐规律;(c)不同输出功率下线宽与腔长的关系;(d)输出功率对线宽大小的影响[22]

    Figure 4.  (a)Schematic structure of wavelength tunable laser; (b)wavelength tuning rules of double ring resonator; (c)relationship between linewidth and cavity length under different output powers; (d)effect of the output power on the linewidth[22]

    图 5  (a) 激光器示意图及其外腔等效方案;(b)不同增益差条件下腔长对SMSR和线宽的影响[23]

    Figure 5.  (a)Schematic of laser and its external cavity equivalent scheme; (b)influence of cavity length on SMSR and linewidth under different gain differences[23]

    图 6  (a) 波导芯片的示意图;(b)激光器自外差拍频光谱[16]

    Figure 6.  (a)Schematic of the waveguide chip; (b)laser heterodyne beat spectrum[16]

    图 7  (a) MRR外腔激光器的示意图;(b)自延迟外差RF拍频光谱;(c)叠加光谱[24]

    Figure 7.  (a)Schematic of MRR external cavity laser; (b)self-delayed heterodyne RF-beat spectra; (c)superimposed laser spectra[24]

    图 8  (a) 基于MRR和air-bridge结构的可调谐激光器结构示意图;(b)C波段的波长范围内测得的光谱线宽[27]

    Figure 8.  (a)Schematic structure of tunable laser based on waveguide microring resonators with air-bridge structure; (b)measured spectral linewidth within C band wavelength range[27]

    图 9  (a) 激光器的结构;(b)有效腔长与线宽和品质因数Q的关系[29]

    Figure 9.  (a)Laser structure; (b)relationship between Lfilter and the linewidth and the quality factor Q[29]

    图 10  (a) 改进前滤波器配置示意图;(b)改进后滤波器配置示意图;(c)对比改进前后的输出功率大小[20]

    Figure 10.  (a)Filter configuration without improvement; (b)improved filter configuration; (c)comparison of output powers before and after improvement[20]

    图 11  (a) 激光器示意图;(b)滤波器设计方案[32]

    Figure 11.  (a)Schematic of the tunable laser; (b)filter design scheme[32]

    图 12  (a) 激光器结构(左)不含MZI的波导结构(右)含MZI的波导结构;(b)不含MZI的结构中(上)两个环形谐振器透射率及(下)波导总透射率;(c)含MZI的结构中(上)MZI与两环形谐振器透射率(下)波导总透射率[35]

    Figure 12.  (a)Schematic structure of laser(left) waveguide structure without MZI and (right) waveguide structure with MZI; (b)in structure without MZI(up) the transmittance of two ring resonators and (down)the total transmittance; (c)in structure with MZI(up) the transmittance of MZI and two ring resonators and (down) the total transmittance[35]

    图 13  (a) 具有高度非对称MZI的窄线宽可调谐激光器;(b)光谱线宽的计算值和实测值[37]

    Figure 13.  (a)Narrow-spectral-linewidth wavelength-tunable laser with highly asymmetric Mach-Zehnder interferometer; (b)calculated and measured values for spectral linewidths[37]

    图 14  模斑转换器示意图[38]

    Figure 14.  Schematic of the SSC[38]

    图 15  (a) Si-SOA界面结构示意图;(b)SOA的近场图样;(c)Si波导的近场图样;(d)模拟不同耦合损耗(C=1.5、4.0、6.0)下的光功率-电流特性[46]

    Figure 15.  (a)Schematic of Si-SOA interface structure; (b)near field pattern(NFP) at SOA facet, (c)NFP at Si facet; (d)simulated Light-power-Current characteristics for different coupling losses(C=1.5, 4.0, 6.0 dB)[46]

    图 16  对硅芯层高度为167 nm的模斑转换器的损耗测量结果[47]

    Figure 16.  Loss measurement results of SSC for silicon core height of 167 nm[47]

    图 17  (a) 不含反射的光耦合的典型反射光谱;(b)含反射的光耦合的典型反射光谱[47]

    Figure 17.  Typical reflectance spectra of optical coupling (a)without reflection (b)with reflection[47]

  • [1] HUYNH T N, O'CARROLL J, SMYTH F, et al.. Low linewidth lasers for enabling high capacity optical communication systems[C]. Proceedings of the 14th International Conference on Transparent Optical Networks IEEE, 2012: 1-3.
    [2] MATSUI Y, ERIKSSON U, WESSTROM J O, et al.. Narrow linewidth tunable semiconductor laser[C]. Proceedings of 2016 Compound Semiconductor Week(CSW)[Includes 28th International Conference on Indium Phosphide & Related Materials(IPRM) & 43rd International Symposium on Compound Semiconductors(ISCS), IEEE, 2016: 1-2.
    [3] 曾飞, 高世杰, 伞晓刚, 等.机载激光通信系统发展现状与趋势[J].中国光学, 2016, 9(1):65-73. http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml

    ZENG F, GAO SH J, SAN X G, et al.. Development status and trend of airborne laser communication terminals[J]. Chinese Optics, 2016, 9(1):65-73.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9388.shtml
    [4] WICHT A, BAWAMIA A, KRVGER M, et al.. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space[J]. Proceedings of SPIE, 2017, 10085:100850F. doi: 10.1117/12.2253655
    [5] 张海洋, 赵长明, 蒋奇君, 等.基于相干激光雷达的激光微多普勒探测[J].中国激光, 2008, 35(12):1981-1985. doi: 10.3321/j.issn:0258-7025.2008.12.025

    ZHANG H Y, ZHAO CH M, JIANG Q J, et al.. Laser detection on micro-doppler effect in coherent ladar[J]. Chinese Journal of Lasers, 2008, 35(12):1981-1985.(in Chinese) doi: 10.3321/j.issn:0258-7025.2008.12.025
    [6] 王直圆, 陈超, 单肖楠, 等.光纤光栅外腔半导体激光器噪声特性仿真[J].激光与光电子学进展, 2017, 54(1):011401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201701020

    WANG ZH Y, CHEN CH, SHAN X N, et al.. Simulation of noise characteristics of fiber grating external cavity lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1):011401.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201701020
    [7] AOYAMA K, YOSHIOKA R, YOKOTA N, et al.. Experimental demonstration of linewidth reduction of laser diode by compact coherent optical negative feedback system[J]. Applied Physics Express, 2014, 7(12):122701. doi: 10.7567/APEX.7.122701
    [8] IP E, KAHN J M, ANTHON D, et al.. Linewidth measurements of MEMS-based tunable lasers for phase-locking applications[J]. IEEE Photonics Technology Letters, 2005, 17(10):2029-2031. doi: 10.1109/LPT.2005.856435
    [9] OKAI M, SUZUKI M, TANIWATARI T. Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow(3.6 kHz) spectral linewidth[J]. Electronics Letters, 1993, 29(19):1696-1697. doi: 10.1049/el:19931128
    [10] 佟存柱, 汪丽杰, 田思聪, 等.布拉格反射波导半导体激光器的研究[J].中国光学, 2015, 8(3):480-498. http://www.chineseoptics.net.cn/CN/abstract/abstract9311.shtml

    TONG C ZH, WANG L J, TIAN S C, et al.. Study on Bragg reflection waveguide diode laser[J]. Chinese Optics, 2015, 8(3):480-498.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9311.shtml
    [11] LIANG W, ILCHENKO V S, ELIYAHU D, et al.. Ultralow noise miniature external cavity semiconductor laser[J]. Nature Communications, 2015, 6:7371. doi: 10.1038/ncomms8371
    [12] ZHANG L, WEI F, SUN G W, et al.. Thermal tunable compact external cavity laser with thermal sensitivity enhanced FBG[C]. Proceedings of the Asia Communications and Photonics Conference, OSA, 2016: AF1F.7.
    [13] NUMATA K, ALALUSI M, STOLPNER L, et al.. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm[J]. Optics Letters, 2014, 39(7):2101-2104. doi: 10.1364/OL.39.002101
    [14] REDDY U, DIAS N L, GARG A, et al.. A single spectral mode wide stripe laser with very narrow linewidth[J]. Applied Physics Letters, 2011, 99(17):171109. doi: 10.1063/1.3656024
    [15] FAN Y W, OLDENBEUVING R M, KLEIN E J, et al.. A hybrid semiconductor-glass waveguide laser[J]. Proceedings of SPIE, 2014:1051-1067.
    [16] OLDENBEUVING R M, KLEIN E J, OFFERHAUS H L, et al.. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity[J]. Laser Physics Letters, 2013, 10(1):015804. doi: 10.1088/1612-2011/10/1/015804
    [17] 王晓倩, 马可贞, 赵宇, 等.SOI多环级联光学谐振腔滤波器[J].发光学报, 2013, 34(5):645-649. http://d.old.wanfangdata.com.cn/Periodical/fgxb201305020

    WANG X Q, MA K ZH, ZHAO Y, et al.. SOI multi-ring cascade optic resonator filters[J]. Chinese Journal of Luminescence, 2013, 34(5):645-649.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201305020
    [18] 潘碧玮, 余力强, 陆丹, 等.20 kHz窄线宽光纤光栅外腔半导体激光器[J].中国激光, 2015, 42(5):41-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505007

    PAN B W, YU L Q, LU D, et al.. 20 kHz narrow linewidth fiber bragg grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2015, 42(5):41-45.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505007
    [19] 周吉, 贺志宏, 于孝军, 等.硅基半导体多场耦合下的光传输及电调控特性分析[J].发光学报, 2016, 37(1):63-73. http://d.old.wanfangdata.com.cn/Periodical/fgxb201601011

    ZHOU J, HE ZH H, YU X J, et al.. Optical transmission and electrical modulation for silicone semiconductor with multi-field effect[J]. Chinese Journal of Luminescence, 2016, 37(1):63-73.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201601011
    [20] KITA T, TANG R, YAMADA H. Narrow spectral linewidth silicon photonic wavelength tunable laser diode for digital coherent communication system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(6):1500612.
    [21] CHU T, FUJIOKA N, ISHIZAKA M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators[J]. Optics Express, 2009, 17(16):14063-14068. doi: 10.1364/OE.17.014063
    [22] SUZUKI K, KITA T, YAMADA H. Wavelength tunable laser diodes with Si-wire waveguide ring resonator wavelength filters[J]. Proceedings of SPIE, 2011, 7943:79431G. doi: 10.1117/12.874662
    [23] REN M, CAI H, TAO J F, et al.. A tunable laser using loop-back external cavity based on double ring resonators[C]. Proceedings of 2013 Transducers & Eurosensors Xxvii: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, IEEE, 2013: 1424-1427.
    [24] ZHAO J L, OLDENBEUVING R M, EPPING J P, et al.. Narrow-linewidth widely tunable hybrid external cavity laser using Si3N4/SiO2 microring resonators[C]. Proceedings of 2016 IEEE, International Conference on Group Ⅳ Photonics, IEEE, 2016: 24-25.
    [25] FAN Y W, EPPING J P, OLDENBEUVING R M, et al.. Optically integrated InP-Si3N4 hybrid laser[J]. IEEE Photonics Journal, 2016, 8(6):1505111.
    [26] FAN Y W, OLDENBEUVING R M, ROELOFFZEN C G, et al.. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser[C]. Proceedings of the Conference on Lasers and Electro-Optics, OSA, 2017: JTh5C.9.
    [27] HU Y, CAO W, TANG X SH, et al.. High power, high SMSR and wide tuning range silicon micro-ring tunable laser[J]. Optics Express, 2017, 25(7):8029-8035. doi: 10.1364/OE.25.008029
    [28] MATSUMOTO T, SUZUKI A, TAKAHASHI M, et al.. Narrow spectral linewidth full band tunable laser based on waveguide ring resonators with low power consumption[C]. Proceedings of 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference, IEEE, 2010: 1-3.
    [29] NEMOTO K, KITA T, YAMADA H. Narrow-spectral-linewidth wavelength-tunable laser diode with Si wire waveguide ring resonators[J]. Applied Physics Express, 2012, 5(8):082701. doi: 10.1143/APEX.5.082701
    [30] KITA T, NEMOTO K, YAMADA H. Narrow spectral linewidth and high output power Si photonic wavelength tunable laser diode[C]. Proceedings of the 10th, International Conference on Group Ⅳ Photonics, IEEE, 2013: 152-153.
    [31] KITA T, NEMOTO K, YAMADA H. Long external cavity Si photonic wavelength tunable laser diode[J]. Japanese Journal of Applied Physics, 2014, 53(4S):04EG04. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0235621424/
    [32] KOBAYASHI N, SATO K, NAMIWAKA M, et al.. Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[J]. Journal of Lightwave Technology, 2015, 33(6):1241-1246. doi: 10.1109/JLT.2014.2385106
    [33] SATO K, KOBAYASHI N, NAMIWAKA M, et al.. Demonstration of silicon photonic hybrid ring-filter external cavity wavelength tunable lasers[C]. Proceedings of 2015 European Conference on Optical Communication, IEEE, 2015: 1-3.
    [34] DEBREGEAS H, FERRARI C, CAPPUZZO M A, et al.. 2 kHz linewidth c-band tunable laser by hybrid integration of reflective SOA and SiO2 PLC external cavity[C]. Proceedings of 2014 International Semiconductor Laser Conference, IEEE, 2014: 50-51.
    [35] KITA T, NEMOTO K, YAMADA H. Silicon photonic wavelength-tunable laser diode with asymmetric Mach Zehnder interferometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4):8201806. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234429877/
    [36] KITA T, TANG R, YAMADA H. Compact silicon photonic wavelength-tunable laser diode with ultra-wide wavelength tuning range[J]. Applied Physics Letters, 2015, 106(11):111104. doi: 10.1063/1.4915306
    [37] TANG R, KITA T, YAMADA H. Narrow-spectral-linewidth silicon photonic wavelength-tunable laser with highly asymmetric Mach Zehnder interferometer[J]. Optics Letters, 2015, 40(7):1504-1507. doi: 10.1364/OL.40.001504
    [38] TSUCHIZAWA T, YAMADA K, FUKUDA H, et al.. Microphotonics devices based on silicon microfabrication technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(1):232-240. doi: 10.1109/JSTQE.2004.841479
    [39] 高峰, 秦莉, 陈泳屹, 等.弯曲波导研究进展及其应用[J].中国光学, 2017, 10(2):176-193. http://www.chineseoptics.net.cn/CN/abstract/abstract9481.shtml

    GAO F, QIN L, CHEN Y Y, et al.. Reseach progress of bent waveguide and its applications[J]. Chinese Optics, 2017, 10(2):176-193.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9481.shtml
    [40] QIU Y, XIAO X, LUO M, et al.. Tunable, narrow line-width silicon micro-ring laser source for coherent optical communications[C]. Proceedings of 2015 Conference on Lasers and Electro-Optics, IEEE, 2015: 1-2.
    [41] TOKUSHIMA M, KAWASHIMA H, HORIKAWA T, et al.. Post-integrated dual-core large-end spot-size converter with Si vertical taper for filter bull-coupling to Si-photonics chip[J]. Jourmal of Lightwave Technology, 2018:4783-4791.
    [42] LEE J H, BOVINGTON J, SHUBIN I, et al.. Demonstration of 12.2% wall plug efficiency in uncooled single mode external-cavity tunable Si/Ⅲ-Ⅴ hybrid laser[J]. Optics Express, 2015, 23(9):12079-12088. doi: 10.1364/OE.23.012079
    [43] GRIFFITH A G, LAU R K W, CARDENAS J, et al.. Silicon-chip mid-infrared frequency comb generation[J]. Nature communications, 2015, 6:6299. doi: 10.1038/ncomms7299
    [44] WATANABE S, TAKAHASHI M, SUZUKI K, et al.. High power tunable resonated-ring-reflector laser using passive alignment technology[C]. Proceedings of 2016 European Conference on Optical Communications, IEEE, 2006: 1-2.
    [45] TAKEUCHI T, TAKAHASHI M, SUZUKI K, et al.. Wavelength tunable laser with silica-waveguide ring resonators[J]. IEICE Transactions on Electronics, 2009, E92-C(2):198-204. doi: 10.1587/transele.E92.C.198
    [46] TANAKA S, JEONG S H, SEKIGUCHI S, et al.. High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology[J]. Optics Express, 2012, 20(27):28057-28069. doi: 10.1364/OE.20.028057
    [47] FUJIOKA N, CHU T, ISHIZAKA M. Compact and low power consumption hybrid integrated wavelength tunable laser module using silicon waveguide resonators[J]. Journal of Lightwave Technology, 2010, 28(21):3115-3120. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220013655/
    [48] LI J, SUN J Q, SHEN X. Theoretical and numerical models of tunable semiconductor ring laser using monolithically integrated microring reflector[J]. High Power Laser and Particle Beams, 2012, 24(2):315-320. doi: 10.3788/HPLPB
    [49] HUANG ZH, WANG Y. Selectable heterogeneous integrated Ⅲ~Ⅴ/SOI single mode laser based on vernier effect[C]. Proceedings of 2013 Conference on Lasers and Electro-Optics Pacific Rim, OSA, 2013: TuPM_3.
    [50] LI SH, WU Y D, YIN X J, et al.. Tunable filters based on an SOI nano-wire waveguide micro ring resonator[J]. Journal of Semiconductors, 2011, 32(8):084007. doi: 10.1088/1674-4926/32/8/084007
    [51] 李霞, 王超, 余辉, 等.基于微环谐振腔的可调谐硅基反射腔镜[J].光学学报, 2016, 36(12):1223002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201612034

    LI X, WANG CH, YU H, et al.. Tunable silicon reflection cavity mirror based on microring resonator[J]. Acta Optica Sinica, 2016, 36(12):1223002.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201612034
    [52] KASPER E.基于锗硅芯片的光电子学前景与挑战[J].光学与光电技术, 2010, 8(2):1-6. doi: 10.3969/j.issn.1672-3392.2010.02.001
    [62] KASPER E. Prospects and challenges of Si/Ge on-chip optoelectronic cells[J]. Optics & Optoelectronics Technology, 2010, 8(2):1-6.(in Chinese)
  • 加载中
图(17)
计量
  • 文章访问数:  5723
  • HTML全文浏览量:  1967
  • PDF下载量:  676
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-05-06
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!