留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

梯度掺杂结构GaN光电阴极的稳定性

李飙 任艺 常本康

李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. 中国光学(中英文), 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
引用本文: 李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. 中国光学(中英文), 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
Citation: LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677

梯度掺杂结构GaN光电阴极的稳定性

doi: 10.3788/CO.20181104.0677
基金项目: 

国家自然科学基金项目 No.61171042

详细信息
    作者简介:

    李飙(1974-), 男, 河南太康人, 博士, 讲师, 主要从事光电材料性能评估与检测方面的研究。E-mail:libiao2006@126.com

  • 中图分类号: O433;TN203

Stability of gradient-doping GaN photocathode

Funds: 

National Natural Science Foundation of Chin No.61171042

More Information
  • 摘要: 利用GaN光电阴极多信息量测试评估系统,对反射式梯度掺杂和均匀掺杂GaN光电阴极样品进行了激活及衰减后的量子效率测试,并测试衰减速率。在同样的衰减时间内,和均匀掺杂样品相比,梯度掺杂样品的衰减比例较小,衰减速率较慢,其原因在于梯度掺杂结构可在其发射层内部产生系列内建电场,致使其能带连续向下弯曲,导致其表面真空能级比均匀掺杂样品下降得更低,发射层表面形成的负电子亲和势更明显,造成发射层内的光生电子更易逸出,阴极量子效率的衰减变慢,从而使其稳定性强于均匀掺杂结构。

     

  • 图 1  反射式均匀掺杂样品A和梯度掺杂样品B结构图

    Figure 1.  Structure of reflection-mode uniform-doping sample A and gradient-doping sample B

    图 2  样品A和B在激活结束后的量子效率测试曲线

    Figure 2.  Quantum efficiency curves of sample A and sample B after activation

    图 3  样品A和B的量子效率测试曲线

    Figure 3.  Quantum efficiency curves of GaN photocathodes in variable conditions

    图 4  样品A和B的相对稳定性测试曲线

    Figure 4.  Curves of relative sensitivity for sample A and B

    图 5  反射式GaN光电阴极的表面势垒示意图

    Figure 5.  Surface potential barrier of reflection-mode GaN photocathode

    图 6  均匀掺杂样品A和梯度掺杂样品B能带结构示意图(Ec为导带能级,Ev为价带能级,EF为费米能级,E0为真空能级,Eg为GaN的禁带宽度)

    Figure 6.  Energy band structure of uniform-doping sample A and gradient-doping sample B(EC is the conduction band minimum, EV is the valence band maximum, EF is the Fermi level, E0 is the vacuum level, Eg is the band gap)

    表  1  均匀掺杂样品A的衰减测试结果

    Table  1.   Quantum efficiency attenuation test results of sample A

    波长/nm240260280300320340
    激活后QE/%513627201614
    12 h后QE/%4225169.86.24.9
    衰减比例/%17.630.640.74661.265
    注:衰减比例为(激活后QE-12 h后QE)/激活后QE。
    下载: 导出CSV

    表  2  梯度掺杂样品B的衰减测试结果

    Table  2.   Quantum efficiency attenation test results of sample B

    波长/nm240260280300320340
    激活后QE/%574436282421
    12 h后QE/%483224181310
    衰减比例/%15.827.333.335.745.852.4
    注:衰减比例为(激活后QE-12 h后QE)/激活后QE。
    下载: 导出CSV

    表  3  样品A和样品B的衰减速率测试结果

    Table  3.   Attenuation rate test results of decadence rate for uniform-doping sample A and gradient-doping sample B

    衰减速率(a.u/h)
    测试时间/h24681012
    梯度掺杂样品B3219.112.710.44.74.6
    均匀掺杂样品A403019.117.614.38.3
    注:衰减速率为(测试值1-测试值2)×100/测试值1。
    下载: 导出CSV
  • [1] 洪国彬, 杨钧杰, 卢廷昌.蓝紫光氮化镓光子晶体面射型激光器[J].中国光学, 2014, 7(4):559-571. http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml

    HONG K B, YANG CH CH, LU T CH. Blue-violet GaN-based photonic crystal surface emitting lasers[J]. Chin. Opt., 2014, 7(4):559-571.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml
    [2] 秦华, 黄永丹, 孙建东, 等.二维电子气等离激元太赫兹波器件[J].中国光学, 2017, 10(1):51-67. http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml

    QIN H, HUANG Y D, SUN J D, et al.. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chin. Opt., 2017, 10(1):51-67.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml
    [3] 蔡丽娥, 张保平, 张江勇, 等.GaN基蓝光VCSEL的制备及光学特性[J].发光学报, 2016, 37(4):452-456. http://www.cqvip.com/QK/92489X/201604/668520133.html

    CAI L E, ZHANG B P, ZHANG J Y, et al.. Fabrication and characteristics of GaN-based blue VCSEL[J]. Chinese J. Luminescence, 2016, 37(4):452-456.(in Chinese) http://www.cqvip.com/QK/92489X/201604/668520133.html
    [4] 邹水平, 吴柏禧, 万珍平, 等.电-热应力对GaN基白光LED可靠性的影响[J].发光学报, 2016, 37(1):124-129. http://www.cqvip.com/QK/92489X/201601/667808202.html

    ZOU SH P, WU B X, WAN ZH P, et al.. Effect of current-temperature stress on the reliability of GaN LED[J]. Chinese J. Luminescence, 2016, 37(1):124-129.(in Chinese) http://www.cqvip.com/QK/92489X/201601/667808202.html
    [5] 李志全, 王聪, 李文超, 等.利用Ag/P-GaN双光栅改善LED发光特性[J].光学 精密工程, 2017, 25(5):1185-1191. http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html

    LI ZH Q, WANG C, LI W CH, et al.. Improving LED luminescence properties by using Ag/P-GaN double grating[J]. Opt. Precision Eng., 2017, 25(5):1185-1191.(in Chinese) http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html
    [6] 王永进, 张锋华, 高绪敏, 等.面向可见光波段的非周期悬空GaN薄膜光栅[J].光学 精密工程, 2017, 25(12):3020-3026. https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc

    WANG Y J, ZHANG F H, GAO X M, et al.. Freestanding non-periodic GaN gratings in visible wavelength region[J]. Opt. Precision Eng., 2017, 25(12):3020-3026.(in Chinese) https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc
    [7] SOMMER A H. Stability of photocathode[J]. Appl. Opt., 1973, 12(1):90-92. doi: 10.1364/AO.12.000090
    [8] 徐江涛.真空残气对GaAs阴极发射性能的影响[J].应用光学, 2003, 24(2):13-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005

    XU J T. Effect of residual gas on emission property of Gallium Arsenide cathode in vacuum[J]. J. Appl. Opt., 2003, 24(2):13-15.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005
    [9] WADA T, NITTA T, NOMURA T. Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes[J]. Jpn. J. Appl. Phys., 1990, 29(10):2087-2091. https://www.researchgate.net/profile/Shiyu_Sun4
    [10] MACHUCA F. A Thin Film p-type GaN Photocathode: prospect for a high performance electron emitter[D]. Stanford: University Stanford, 2004.
    [11] ZOU J J, CHANG B K. Gradient-doping negative electron affinity GaAs photocathodes[J]. Opt. Eng., 2006, 45(5):054001. doi: 10.1117/1.2205171
    [12] YANG ZH, CHANG B K, ZOU J J. Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J]. Appl. Opt., 2007, 46(28):7035-7039. doi: 10.1364/AO.46.007035
    [13] 乔建良, 常本康, 杜晓晴, 等.反射式负电子亲和势GaN光电阴极量子效率衰减机理研究[J].物理学报, 2010, 59(4):2855-2859. doi: 10.7498/aps.59.2855

    QIAO J L, CHANG B K, DU X Q, et al.. Quantum efficiency decay mechanism for reflection mode negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2010, 59(4):2855-2859.(in Chinese) doi: 10.7498/aps.59.2855
    [14] 高频, 王晓晖, 杜玉杰, 等.NEA GaN光电阴极的制备与评估[J].红外技术, 2011, 33(6):332-335. http://www.cqvip.com/QK/92901X/201106/38270750.html

    GAO P, WANG X H, DU Y J, et al.. Preparation and evaluation of NEA GaN photocthode[J]. Infrared Technol., 2011, 33(6):332-335.(in Chinese) http://www.cqvip.com/QK/92901X/201106/38270750.html
    [15] IWAYA M, TAKEUCHI T, YAMAGUCHI S, et al.. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN[J]. Jpn. J. Appl. Phys., 1998, 37:L316-L318. doi: 10.1143/JJAP.37.L316
    [16] NAKCMURA S, MUKAI T, SENOH M, et al.. Thermal annealing effects on p-type Mg-doped GaN films[J]. Jpn. J. Appl. Phys., 1992, 31:L139-L140. doi: 10.1143/JJAP.31.L139
    [17] MACHUCA F, LIU Z. Fabrication of group Ⅲ-Nitride photocathode having Cs activation layer: US, 0170324 A1[P]. 2006-01-01.
    [18] TERESHCHENKO O E, SHAIBLER G, YAROSHEVICH A S, et al.. Low-temperature method of cleaning p-GaN(0001) surfaces for photoemitters with effective negative electron affinity[J]. Phys. Solid State, 2004, 46(10):1949-1953. doi: 10.1134/1.1809437
    [19] KING S W, BARNAK J P, BREMSER M D, et al.. Cleaning of AlN and GaN surfaces[J]. J. Appl. Phys., 1998, 84(9):5248-5260. doi: 10.1063/1.368814
    [20] 乔建良, 田思, 常本康, 等.负电子亲和势GaN光电阴极激活机理研究[J].物理学报, 2009, 58(8):5847-5851. doi: 10.7498/aps.58.5847

    QIAO J L, TIAN S, CHANG B K, et al.. Activation mechanism of negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2009, 58(8):5847-5851.(in Chinese) doi: 10.7498/aps.58.5847
    [21] 邹继军, 常本康, 杜晓晴, 等.GaAs光电阴极光谱响应曲线形状的变化[J].光谱学与光谱分析, 2007, 27(8):1465-1468. http://www.cqvip.com/QK/90993X/200708/25252972.html

    ZOU J J, CHANG B K, DU X Q, et al.. Variation of spectral response curve shape of GaAs photocathodes[J]. Spectrosc. Spectral Anal., 2007, 27(8):1465-1468.(in Chinese) http://www.cqvip.com/QK/90993X/200708/25252972.html
    [22] NIU J, ZHANG Y J, CHANG B K, et al.. Influence of varied doping structure on photoemissive property of photocathode[J]. Chin. Phys. B, 2011, 20(4):044209. doi: 10.1088/1674-1056/20/4/044209
    [23] 张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823

    ZHANG Y J. Design and characteristic evaluation of varied doping GaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  2178
  • HTML全文浏览量:  1007
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-01-30
  • 刊出日期:  2018-08-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!