留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能光学的概念及发展

王建立 刘欣悦

王建立, 刘欣悦. 智能光学的概念及发展[J]. 中国光学(中英文), 2013, 6(4): 437-448. doi: 10.3788/CO.20130604.0437
引用本文: 王建立, 刘欣悦. 智能光学的概念及发展[J]. 中国光学(中英文), 2013, 6(4): 437-448. doi: 10.3788/CO.20130604.0437
WANG Jian-li, LIU Xin-yue. Concept and development of smart optics[J]. Chinese Optics, 2013, 6(4): 437-448. doi: 10.3788/CO.20130604.0437
Citation: WANG Jian-li, LIU Xin-yue. Concept and development of smart optics[J]. Chinese Optics, 2013, 6(4): 437-448. doi: 10.3788/CO.20130604.0437

智能光学的概念及发展

doi: 10.3788/CO.20130604.0437
基金项目: 

国家高技术研究发展计划(863计划)资助项目(No.2012AAXXX1003P)

详细信息
    作者简介:

    王建立(1971-),男,山东曲阜人,博士,研究员,博士生导师,2002年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间目标探测技术、地基高分辨率成像光电望远镜总体技术等方面的研究。E-mail:wangjianli@ciomp.ac.cn;刘欣悦(1973-),男,辽宁大连人,博士,副研究员,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学成像技术及图像处理分析方面的研究。E-mail:sirliuxy@sina.com

    王建立(1971-),男,山东曲阜人,博士,研究员,博士生导师,2002年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间目标探测技术、地基高分辨率成像光电望远镜总体技术等方面的研究。E-mail:wangjianli@ciomp.ac.cn;刘欣悦(1973-),男,辽宁大连人,博士,副研究员,2006年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学成像技术及图像处理分析方面的研究。E-mail:sirliuxy@sina.com

    通讯作者:

    刘欣悦

  • 中图分类号: TH74;O439

Concept and development of smart optics

  • 摘要: 智能光学是在主动光学和自适应光学基础上发展起来的新兴的概念。本文介绍了智能光学概念的提出和发展过程,并进一步明确和扩展了智能光学的概念和范畴。对智能光学的技术基础及其应用现状进行了总结和评述,主要包括动态光学调制技术、动态光学探测技术、智能光学系统等,涉及了天文、军事、空间、生物医学等领域中应用的望远镜、显微镜、激光器等光学系统和光学设备。最后,对智能光学的未来发展和应用前景提出了展望。

     

  • [1] NOETHE L. Active optics in modern large optical telescopes[J]. Progress in Optics,2002,43:1-69. [2] TYSON R K. Principles of Adaptive Optics[M]. 3rd ed. Boca Raton:CRC Press,2011. [3] WHYNDHAM M. Space science meets smart optics[J]. Astronomy & Geophysics,2003,44(3):31-32. [4] WELCH S,GREENAWAY A,DOEL P,et al.. Smart optics in astronomy and space[J]. Astronomy & Geophysics,2003,44(1):26-29. [5] VERHAEGEN M. Smart optics programme [EB/OL].[2013-7-19].http://www.dcsc.tudelft.nl/~mverhaegen/n4ci/sos.htm. [6] 张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学,2012,5(4):327-336. ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics,2012,5(4):327-336.(in Chinese) [7] MADEC P Y. Overview of deformable mirror technologies for adaptive optics and astronomy[J]. SPIE,2012,8447:844705. [8] 林旭东,薛陈,刘欣悦,等. 自适应光学波前校正器技术发展现状[J]. 中国光学,2012,5(4):337-351. LIN X D,XUE CH,LIU X Y,et al.. Current status and research development of wavefront correctors for adaptive optics[J]. Chinese Optics,2012,5(4):337-351.(in Chinese) [9] 曹召良,李小平,宣丽,等. 液晶自适应光学的研究进展[J]. 中国光学,2012,5(1):12-19. CAO ZH L,LI X P,XUAN L,et al.. Recent progress in liquid crystal adaptive optical technologies[J]. Chinese Optics,2012,5(1):12-19.(in Chinese) [10] WIRTH A,CAVACO J,BRUNO T,et al.. Deformable mirror technologies at AOA Xinetics[J]. SPIE,2013,8780:87800M. [11] PLATT B C,SHACK R. History and principles of Shack-Hartmann wavefront sensing[J]. J. Refractive Surgery,2001,17:S573-S577. [12] PRIMOT J,SOGNO L. Achromatic three-wave(or more) lateral shearing interferometer[J]. J. Optical Society of America A,1995,12(12):2679-2685. [13] PRIMOT J,GUERINEAU N. Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard[J]. Appl. Optics,2000,39(31):5715-5720. [14] VELGHE S,PRIMOT J,GUERINEAU N,et al.. Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers[J]. Opt. Lett.,2005,30(3):245-247. [15] RAGAZZONI R. Pupil plane wavefront sensing with an oscillating prism[J]. J. Mod.n Opt.,1996,43(2):289-293. [16] VERINAUD C. On the nature of the measurements provided by a pyramid wave-front sensor[J]. Opt. Commun.,2004,233(1-3):27-38. [17] CHEW T Y,CLARE R M,LANE R G. A comparison of the Shack-Hartmann and pyramid wavefront sensors[J]. Opt. Commun.,2006,268(2):189-195. [18] ANDERSEN G,REIBEL R. Holographic wavefront sensor[J]. SPIE,2005,5894:58940O. [19] GHEBREMICHAEL F,ANDERSEN G P,GURLEY K S. Holography-based wavefront sensing[J]. Appl. Optics,2008,47(4):A62-A69. [20] ANDERSEN G P,DUSSAN L,GHEBREMICHAEL F,et al.. Holographic wavefront sensor[J]. Opt. Eng.,2009,48(8):085801. [21] GONSALVES R A. Phase retrieval and diversity in adaptive optics[J]. Opt. Eng.,1982,21(5):215829. [22] FIENUP J R. Phase retrieval algorithms:a comparison[J]. Appl. Optics,1982,21(15):2758-2769. [23] PAXMAN R G,SCHULZ T J,FIENUP J R. Joint estimation of object and aberrations by using phase diversity[J]. J. Optical Society of America A,1992,9(7):1072-1085. [24] LIGHTSEY P A,CHANEY D,GALLAGHER B,et al.. Optical performance for the actively controlled James Webb Space Telescope[J]. SPIE,2010,7731:77310B. [25] BOOTH M. Wave front sensor-less adaptive optics:a modal-based approach using sphere packing[J]. Opt. Express,2006,14(4):1339-1352. [26] HUANG L H,RAO C H. Wavefront sensorless adaptive optics:a general modal based approach[J]. Optics Express,2011,19(1):371-379. [27] VORONTSOV M A,CARHART G W,RICKLIN J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Opt. Lett.,1997,22(12):907-909. [28] VORONTSOV M A,SIVOKON V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase- distortion correction[J]. J. Optical Society of America A,1998,15(10):2745-2758. [29] NIGHTINGALE A M,GORDEYEV S,JUMPER E J,et al.. Regularizing shear layer for adaptive optics control application [C]//Proceedings of the 36th AIAA Plasmadynamics and Lasers Conference,Jun 6-9,2005,Toronto,Canada,2005. [30] TESCH J,GIBSON J S. Optimal and adaptive correction of aero-optical wavefronts in an adaptive optics experiment[J]. SPIE,2011,8165:816502. [31] TESCH J,GIBSON J S,GORDEYEV S,et al.. Identification, prediction and control of aero optical wavefronts in laser beam propagation [C]. Proceedings of the 41st AIAA Plasmadynamics and Lasers Conference,Jun 27-30,2011,Honolulu,USA:AIAA,2011. [32] JUMER E J,ZENK M A,GORDEYEV S,et al.. Airborne aero-optics laboratory[J]. Opt. Eng.,2013,52(7):071408. [33] ALBERT O,SHERMAN L,MOUROU G,et al.. Smart microscope:an adaptive optics learning system for aberration correction in multiphoton confocal microscopy[J]. Opt. Lett.,2000,25(1):52-54. [34] BOOTH M J. Adaptive optics in microscopy[J]. Philosophical Transactions of the Royal Society A,2007,365(1861):2829-2843. [35] DEBARRE D,BOTCHERBY E J,BOOTH M J,et al.. Adaptive optics for structured illumination microscopy[J]. Opt. Express,2008,16(13):9290-9305. [36] DEBARRE D,BOTCHERBY E J,WATANABE T,et al.. Image-based adaptive optics for two-photon microscopy[J]. Opt. Lett.,2009,34(16):2495-2497. [37] ANDILLA J,LEVECQ X. MICAO: first universal all-in-the-box adaptive optics plug in accessory for stand high resolution microscopy[J]. SPIE,2010,7568:75680U. [38] LIANG J,WILLIAMS D R,MILLER D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J. Optical Society of America A,1997,14(11):2884-2892. [39] AUSTIN R,FERNANDO R-B,WILLIAM J D III,et al.. Adaptive optics scanning laser ophthalmoscopy[J]. Opt. Express,10(9):405-412. [40] ZAWADZKI R J,JONES S M,OLIVER S S,et al.. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging[J]. Opt. Express,2005,13(21):8532-8546. [41] VIARD C,NAKASHIMA K,LAMORY B,et al.. Imaging microscopic structure in pathological retinas using a flood-illumination adaptive optics retinal camera[J]. SPIE,2011,7885:788509. [42] SAHIN B,LAMORY B,LEVECQ X,et al.. Adaptive optics with pupil tracking for high resolution retinal imaging[J]. Biomed. Opt. Express,2012,3(2):225-239. [43] KUDRYASHOV A V,SAMARKIN V V. Control of high power CO2 laser beam by adaptive optical element[J]. Opt. Commun.,1995,118(3-4):317-322. [44] ARANCIBIA N O P,CHEN N,GIBSON J S,et al.. Adaptive control of jitter in laser beam pointing and tracking[J]. SPIE,2006,6304:63041G. [45] BAHK S-W,FESS E,KRUSCHWITZ B E,et al.. A high resolution, adaptive beam-shaping system for high power lasers[J]. Opt. Express,2010,18(9):9151-9163. [46] 赵建川,郭汝海,孙涛. 舰载激光武器的发展历程及趋势分析[J]. 中国光学,2013,6(2):151-155. ZHAO J C,GUO R H,SUN T. Development history and trend analysis of shipborne laser weapons[J]. Chinese Optics,2013,6(2):151-155.(in Chinese) [47] LIU Y-T,GIBSON J S. Adaptive control in adaptive optics for directed energy systems[J]. Opt. Eng.,2007,46(4):046601. [48] TYSON R K. Adaptive optics and ground-to-space laser communications[J]. Appl. Optics,1996,35(19):3640-3646. [49] TING C,VOELZ D G,GILES M K. Laser satellite communications with adaptive optics[J]. SPIE,2005,5892:589213. [50] MAJUMDAR A K,RICKLIN J C. Free-space Laser Communications:Principles and Advances[M]. New York:Springer Press,2008. [51] 付强,姜会林,王晓曼,等. 空间激光通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125. FU Q,JIANG H L,WANG X M,et al.. Research status and development trend of space laser communication[J]. Chinese Optics,2012,5(2):116-125.(in Chinese) [52] URABE H,HARUYAMA S,SHOGENJI T,et al.. High data rate ground-to-train free-space optical communication system[J]. Opt. Eng.,2012,51(3):031204.
  • 加载中
计量
  • 文章访问数:  2772
  • HTML全文浏览量:  293
  • PDF下载量:  798
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-09
  • 修回日期:  2013-08-16
  • 刊出日期:  2013-08-10

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!