留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical vortices in nanophotonics

LI Chen-hao MAIER Stefan A. REN Hao-ran

李晨昊, MaierStefan A., 任浩然. 纳米光子学中的光学涡旋[J]. 中国光学(中英文), 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066
引用本文: 李晨昊, MaierStefan A., 任浩然. 纳米光子学中的光学涡旋[J]. 中国光学(中英文), 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066
LI Chen-hao, MAIER Stefan A., REN Hao-ran. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066
Citation: LI Chen-hao, MAIER Stefan A., REN Hao-ran. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066

纳米光子学中的光学涡旋

详细信息
  • 中图分类号: O439

Optical vortices in nanophotonics

doi: 10.37188/CO.2021-0066
Funds: Supported by China Scholarship Council National Construction High-Level University Public Postgraduate Project (No. 201906120420)
More Information
    Author Bio:

    Mr Chenhao Li received his B.E.in Electronics Science and Technology from Harbin Institute of Technology in 2017. In 2019, he obtained M.Eng in Physical Electronics from Harbin Institute of Technology. Currently he is a PhD candidate at Ludwig-Maximilians-Universität Münchenin Germany supported by an LMU-CSC scholarship. His current research interests include nanophotonics and nanofabrication andtheir applications. E-mail: chenhao.li@physik.uni-muenchen.de

    Dr Haoran Ren gained his PhD in February 2017 at Swinburne University of Technology in Australia. From 2016 to 2018, he was a postdoc at RMIT University in Australia. In October-December 2018, he won a Victoria Fellowship to visit the National Centre for Scientific Research (CNRS) in France. From 2019 to 2020, he was a former Humboldt Research Fellow at Ludwig Maximilian University of Munich in Germany. In December 2020, Dr Ren relocated his research back to Australia and hold a Macquarie University Research Fellowship. His research interests include nanophotonics, structured light, optical holography, plasmonics, integrated photonics, and optical fibers

    Corresponding author: Haoran.Ren@mq.edu.au
  • 摘要: 在过去的二十年中,携带轨道角动量的涡旋光引起了研究人员的广泛兴趣。涡旋光不仅在光与物质相互作用中扮演着重要角色,而且可极大拓宽光学信息的承载容量。与此同时,纳米科技的发展使得纳米光子学成为一个新兴学科,开辟了利用纳米结构和器件对光进行调控的新途径。当纳米技术和涡旋光相结合时,衍生出许多新的思路和概念。本文回顾和总结了基于纳米光子学的涡旋光产生、探测及其应用,并对该研究领域的未来进行了展望。

     

  • Figure 1.  Schematics of the SAM and OAM of light. (a) Left or right circular polarization light with SAM of 1 or −1; (b) Two kinds of light carrying different OAM states with −1, 1 as well as their phase and intensity distribution at bottom row, respectively.

    Figure 2.  Nanophotonic generation of optical vortices using metasurfaces. (a) A dynamic phase metasurface imprinted with a spiral phase profile. (b) A spin-to-orbital conversion L-shape metasurface for the generation of optical vortices with $ l=\pm 2 $. (c) An interleaved geometric metasurface for the simultaneous generation of multiple optical vortices carrying different OAM modes. (d) A J-plate metasurface based on a new concept of arbitrary spin-orbit conversion. The images in (a)-(d) were adapted from Refs.36-39, respectively.

    Figure 3.  Generation of OAM-carrying optical vortices via dielectric and plasmonic resonators. (a) An array of OAM vortex WGM emitters. (b) An OAM microlaser. (c) A silicon waveguide-based OAM multiplexer. (d) Principle of a chirality-tunable OAM microlaser. (e) A perovskite BIC metasurface. (f) A plasmonic vortex resonator. (g) Schematic of a plasmonic skyrmion imaged through a time-resolved two-photon photoemission electron microscope. The images in (a)-(g) were adapted from Refs. 41-47, respectively.

    Figure 4.  Plasmonic and photocurrent detection of optical vortices. (a) A holographic plasmonic metasurface was used to detect a single OAM mode in the near-field. (b) An ultracompact OAM-demultiplexing chip. (c) A plasmonic topological insulator-based OAM nanometrology chip. (d) Photocurrent detection of incident optical vortices. The images in (a)-(d) were adapted from Refs. 49, 23, 24, 50 respectively.

    Figure 5.  Optical trapping and edge-enhancement imaging using optical vortices. (a) A particle trapped by the OAM and SAM of light, respectively. (b) A particle necklace consisting of 26 particles, trapped by a vortex beam. (c) Edge-enhancement imaging based on an optical vortex beam. The images in (a)-(c) were adapted from Refs 27, 95 and 121, respectively.

    Figure 6.  Principle of OAM holography. (a) Schematic of an OAM-preserving hologram capable of transferring the OAM property from an OAM incident beam to a holographic image. The inset (right top) shows the OAM property transfer in the spatial frequency domain (k-space). The inset (right bottom) presents the phase (φ) and intensity (I) distributions of single pixels in the reconstructed holographic images, respectively. Pseudo colors are used to visualize different OAM modes. (b) Schematic of an OAM-selective hologram sensitive to a given OAM mode. The inset (right top) shows the OAM conversion from an incident OAM beam to a fundamental spatial mode after passing through an OAM-selective hologram. The inset (right bottom) presents the phase (φ) and intensity (I) distributions of single pixels in the reconstructed holographic images using different OAM modes. High intensity is achieved in each pixel whenever the incident light has a topological charge matching the design of the interface. (c) Schematic of an OAM-multiplexing hologram capable of reconstructing multiple distinctive OAM-dependent holographic images. Fig. 6 is adapted from Ref. 122.

    Figure 7.  Principle of high-bandwidth twisted light holography based on a complex-amplitude metasurface hologram. (a) Time-dependent OAM incident beams impinge on a large-scale complex-amplitude metasurface hologram to reconstruct two holographic videos consisting of a large number of OAM-dependent image frames. (b) SEM and optical (bottom left inset) images of a fabricated complex-amplitude OAM-multiplexing metasurface hologram. Enlarged SEM images of nanopillars are given on the right side. Fig. 7 was adapted from Ref. 123.

  • [1] ACKLAND B, ANESKO A, BRINTHAUPT D, et al. A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP[J]. IEEE Journal of Solid-State Circuits, 2000, 35(3): 412-424. doi: 10.1109/4.826824
    [2] DUTTA S, JENSEN R, RIECKMANN A. Viper: a multiprocessor SOC for advanced set-top box and digital TV systems[J]. IEEE Design &Test of Computers, 2001, 18(5): 21-31.
    [3] GOODACRE J, SLOSS A N. Parallelism and the ARM instruction set architecture[J]. Computer, 2005, 38(7): 42-50. doi: 10.1109/MC.2005.239
    [4] KISTLER M, PERRONE M, PETRINI F. Cell multiprocessor communication network: built for speed[J]. IEEE Micro, 2006, 26(3): 10-23. doi: 10.1109/MM.2006.49
    [5] POLITI A, CRYAN M J, RARITY J G, et al. Silica-on-silicon waveguide quantum circuits[J]. Science, 2008, 320(5876): 646-649. doi: 10.1126/science.1155441
    [6] POLITI A, MATTHEWS J C F, O'BRIEN J L. Shor's quantum factoring algorithm on a photonic chip[J]. Science, 2009, 325(5945): 1221. doi: 10.1126/science.1173731
    [7] SMITH B J, KUNDYS D, THOMAS-PETER N, et al. Phase-controlled integrated photonic quantum circuits[J]. Optics Express, 2009, 17(16): 13516-13525. doi: 10.1364/OE.17.013516
    [8] SILVERSTONE J W, BONNEAU D, OHIRA K, et al. On-chip quantum interference between silicon photon-pair sources[J]. Nature Photonics, 2014, 8(2): 104-108. doi: 10.1038/nphoton.2013.339
    [9] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature Communications, 2014, 5: 4213. doi: 10.1038/ncomms5213
    [10] CAROLAN J, HARROLD C, SPARROW C, et al. Universal linear optics[J]. Science, 2015, 349(6249): 711-716. doi: 10.1126/science.aab3642
    [11] PAESANI S, DING Y H, SANTAGATI R, et al. Generation and sampling of quantum states of light in a silicon chip[J]. Nature Physics, 2019, 15(9): 925-929. doi: 10.1038/s41567-019-0567-8
    [12] ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053
    [13] LI X P, LAN T H, TIEN C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998. doi: 10.1038/ncomms2006
    [14] LI X P, REN H R, CHEN X, et al. A thermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6: 6984. doi: 10.1038/ncomms7984
    [15] HUANG L L, MÜHLENBERND H, LI X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541
    [16] SHEN B, WANG P, POLSON R, et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint[J]. Nature Photonics, 2015, 9(6): 378-382. doi: 10.1038/nphoton.2015.80
    [17] MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111
    [18] YUN H, LEE S Y, HONG K, et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J]. Nature Communications, 2015, 6: 7133. doi: 10.1038/ncomms8133
    [19] DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242. doi: 10.1038/nnano.2014.317
    [20] PIGGOTT A Y, LU J, LAGOUDAKIS K G, et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 2015, 9(6): 374-377. doi: 10.1038/nphoton.2015.69
    [21] LAUX E, GENET C, SKAULI T, et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2008, 2(3): 161-164. doi: 10.1038/nphoton.2008.1
    [22] LU Y Q, ZHAO J B, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 2013, 8(1): 32-36.
    [23] REN H R, LI X P, ZHANG Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809. doi: 10.1126/science.aaf1112
    [24] YUE Z J, REN H R, WEI SH B, et al. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J]. Nature Communications, 2018, 9(1): 4413. doi: 10.1038/s41467-018-06952-1
    [25] POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1909, 82(557): 560-567.
    [26] BETH R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-125. doi: 10.1103/PhysRev.50.115
    [27] O'NEIL A T, MACVICAR I, ALLEN L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 2002, 88(5): 053601. doi: 10.1103/PhysRevLett.88.053601
    [28] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [29] SIT A, BOUCHARD F, FICKLER R, et al. High-dimensional intracity quantum cryptography with structured photons[J]. Optica, 2017, 4(9): 1006-1010. doi: 10.1364/OPTICA.4.001006
    [30] NAGALI E, SANSONI L, SCIARRINO F, et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence[J]. Nature Photonics, 2009, 3(12): 720-723. doi: 10.1038/nphoton.2009.214
    [31] WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519. doi: 10.1038/nature14246
    [32] WILLNER A E, LIU C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 2020, 10(1): 225-233. doi: 10.1515/nanoph-2020-0435
    [33] GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456. doi: 10.1364/OPEX.12.005448
    [34] HECKENBERG N R, MCDUFF R, SMITH C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223. doi: 10.1364/OL.17.000221
    [35] BEIJERSBERGEN M W, COERWINKEL R P C, KRISTENSEN M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327. doi: 10.1016/0030-4018(94)90638-6
    [36] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [37] KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light:Science &Applications, 2014, 3(5): e167.
    [38] MAGUID E, YULEVICH I, VEKSLER D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206. doi: 10.1126/science.aaf3417
    [39] DEVLIN R C, AMBROSIO A, RUBIN N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901. doi: 10.1126/science.aao5392
    [40] DEVLIN R C, AMBROSIO A, WINTZ D, et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces[J]. Optics Express, 2017, 25(1): 377-393. doi: 10.1364/OE.25.000377
    [41] CAI X L, WANG J W, STRAIN M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366. doi: 10.1126/science.1226528
    [42] XIE ZH W, LEI T, LI F, et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light:Science &Applications, 2018, 7: 18001.
    [43] MIAO P, ZHANG ZH F, SUN J B, et al. Orbital angular momentum microlaser[J]. Science, 2016, 353(6298): 464-467. doi: 10.1126/science.aaf8533
    [44] CARLON ZAMBON N, ST-JEAN P, MILIĆEVIĆ M, et al. Optically controlling the emission chirality of microlasers[J]. Nature Photonics, 2019, 13(4): 283-288. doi: 10.1038/s41566-019-0380-z
    [45] HUANG C, ZHANG CH, XIAO SH M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021. doi: 10.1126/science.aba4597
    [46] KIM H, PARK J, CHO S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 2010, 10(2): 529-536. doi: 10.1021/nl903380j
    [47] DAI Y N, ZHOU ZH K, GHOSH A, et al.. Ultrafast microscopy of a plasmonic spin skyrmion[J]. arXiv: 1912.03826, 2019.
    [48] SPEKTOR G, KILBANE D, MAHRO A K, et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J]. Science, 2017, 355(6330): 1187-1191. doi: 10.1126/science.aaj1699
    [49] GENEVET P, LIN J, KATS M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278. doi: 10.1038/ncomms2293
    [50] JI ZH R, LIU W J, KRYLYUK S, et al. Photocurrent detection of the orbital angular momentum of light[J]. Science, 2020, 368(6492): 763-767. doi: 10.1126/science.aba9192
    [51] POZAR D M, TARGONSKI S D. A shared-aperture dual-band dual-polarized microstrip array[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(2): 150-157. doi: 10.1109/8.914255
    [52] LAGER I E, TRAMPUZ C, SIMEONI M, et al. Interleaved array antennas for FMCW radar applications[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(8): 2486-2490. doi: 10.1109/TAP.2009.2024573
    [53] COMAN C I, LAGER I E, LIGTHART L P. The design of shared aperture antennas consisting of differently sized elements[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 376-383. doi: 10.1109/TAP.2005.863382
    [54] SIMEONI M, LAGER I E, COMAN C I, et al. Implementation of polarization agility in planar phased-array antennas by means of interleaved subarrays[J]. Radio Science, 2009, 44(5): RS5013.
    [55] POCHI Y, CLAIRE G. Optics of Liquid Crystal Displays[M]. Canada: Wiley, 2009.
    [56] DE VRIES H. Rotatory power and other optical properties of certain liquid crystals[J]. Acta Crystallographica, 1951, 4(3): 219-226. doi: 10.1107/S0365110X51000751
    [57] KOBASHI J, YOSHIDA H, OZAKI M. Planar optics with patterned chiral liquid crystals[J]. Nature Photonics, 2016, 10(6): 389-392. doi: 10.1038/nphoton.2016.66
    [58] RAFAYELYAN M, TKACHENKO G, BRASSELET E. Reflective spin-orbit geometric phase from chiral anisotropic optical media[J]. Physical Review Letters, 2016, 116(25): 253902. doi: 10.1103/PhysRevLett.116.253902
    [59] CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 2019, 10(1): 2518. doi: 10.1038/s41467-019-10538-w
    [60] LI SH Q, XU X W, MARUTHIYODAN VEETIL R, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    [61] BUCHNEV O, PODOLIAK N, KACZMAREK M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 2015, 3(5): 674-679. doi: 10.1002/adom.201400494
    [62] DECKER M, KREMERS C, MINOVICH A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Optics Express, 2013, 21(7): 8879-8885. doi: 10.1364/OE.21.008879
    [63] KOMAR A, PANIAGUA-DOMÍNGUEZ R, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748. doi: 10.1021/acsphotonics.7b01343
    [64] ZHANG Y F, FOWLER C, LIANG J H, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 2021.
    [65] CHU CH H, TSENG M L, CHEN J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser &Photonics Reviews, 2016, 10(6): 986-994.
    [66] WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    [67] BERTO P, PHILIPPET L, OSMOND J, et al. Tunable and free-form planar optics[J]. Nature Photonics, 2019, 13(9): 649-656. doi: 10.1038/s41566-019-0486-3
    [68] WANG B, LIU W ZH, ZHAO M X, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 2020, 14(10): 623-628. doi: 10.1038/s41566-020-0658-1
    [69] DOELEMAN H M, MONTICONE F, DEN HOLLANDER W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-401. doi: 10.1038/s41566-018-0177-5
    [70] ZHANG Y W, CHEN A, LIU W ZH, et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 2018, 120(18): 186103. doi: 10.1103/PhysRevLett.120.186103
    [71] CHIASERA A, DUMEIGE Y, FÉRON P, et al. Spherical whispering-gallery-mode microresonators[J]. Laser &Photonics Reviews, 2010, 4(3): 457-482.
    [72] ZHEN B, HSU C W, LU L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401. doi: 10.1103/PhysRevLett.113.257401
    [73] SPEKTOR G, KILBANE D, MAHRO A K, et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold[J]. Physical Review X, 2019, 9(2): 021031. doi: 10.1103/PhysRevX.9.021031
    [74] SHI P, DU L P, YUAN X C. Strong spin–orbit interaction of photonic skyrmions at the general optical interface[J]. Nanophotonics, 2020, 9(15): 4619-4628. doi: 10.1515/nanoph-2020-0430
    [75] DAI Y N, ZHOU ZH K, GHOSH A, et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 2020, 588(7839): 616-619. doi: 10.1038/s41586-020-3030-1
    [76] TSESSES S, OSTROVSKY E, COHEN K, et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 2018, 361(6406): 993-996. doi: 10.1126/science.aau0227
    [77] YANG W R, YANG H H, CAO Y SH, et al. Photonic orbital angular momentum transfer and magnetic skyrmion rotation[J]. Optics Express, 2018, 26(7): 8778-8790. doi: 10.1364/OE.26.008778
    [78] DU L P, YANG A P, ZAYATS A V, et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 2019, 15(7): 650-654. doi: 10.1038/s41567-019-0487-7
    [79] DAVIS T J, JANOSCHKA D, DREHER P, et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 2020, 368(6489): eaba6415. doi: 10.1126/science.aba6415
    [80] MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905
    [81] NAGALI E, SCIARRINO F, DE MARTINI F, et al. Quantum information transfer from spin to orbital angular momentum of photons[J]. Physical Review Letters, 2009, 103(1-3): 013601.
    [82] BLIOKH K Y, OSTROVSKAYA E A, ALONSO M A, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 2011, 19(27): 26132-26149. doi: 10.1364/OE.19.026132
    [83] MIRHOSSEINI M, MALIK M, SHI ZH M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4: 2781. doi: 10.1038/ncomms3781
    [84] WEST P R, ISHII S, NAIK GV, et al. Searching for better plasmonic materials[J]. Laser &Photonics Reviews, 2010, 4(6): 795-808.
    [85] NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 2013, 25(24): 3264-3294. doi: 10.1002/adma.201205076
    [86] REN H R, GU M. Angular momentum-reversible near-unity bisignate circular dichroism[J]. Laser &Photonics Reviews, 2018, 12(5): 1700255.
    [87] OU J Y, SO J K, ADAMO G, et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2[J]. Nature Communications, 2014, 5: 5139. doi: 10.1038/ncomms6139
    [88] YUE Z J, XUE G L, LIU J, et al. Nanometric holograms based on a topological insulator material[J]. Nature Communications, 2017, 8: 15354. doi: 10.1038/ncomms15354
    [89] DUBROVKIN A M, ADAMO G, YIN J, et al. Visible range plasmonic modes on topological insulator nanostructures[J]. Advanced Optical Materials, 2017, 5(3): 1600768. doi: 10.1002/adom.201600768
    [90] MEI SH T, HUANG K, LIU H, et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits[J]. Nanoscale, 2016, 8(4): 2227-2233. doi: 10.1039/C5NR07374J
    [91] ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290. doi: 10.1364/OL.11.000288
    [92] HE H, HECKENBERG N R, RUBINSZTEIN-DUNLOP H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms[J]. Journal of Modern Optics, 1995, 42(1): 217-223. doi: 10.1080/09500349514550171
    [93] FRIESE M E J, NIEMINEN T A, HECKENBERG N R, et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 1998, 394(6691): 348-350. doi: 10.1038/28566
    [94] GRIER D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816. doi: 10.1038/nature01935
    [95] CHEN M ZH, MAZILU M, ARITA Y, et al. Optical trapping with a perfect vortex beam[J]. Proceedings of SPIE, 2014, 9164: 91640K.
    [96] ZHANG Y Q, SHI W, SHEN ZH, et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 2015, 5: 15446. doi: 10.1038/srep15446
    [97] FICKLER R, LAPKIEWICZ R, HUBER M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 2014, 5: 4502. doi: 10.1038/ncomms5502
    [98] MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316. doi: 10.1038/35085529
    [99] KARIMI E, BOYD R W. PHYSICS. Classical entanglement?[J]. Science, 2015, 350(6265): 1172-1173. doi: 10.1126/science.aad7174
    [100] TONINELLI E, NDAGANO B, VALLÉS A, et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial[J]. Advances in Optics and Photonics, 2019, 11(1): 67-134. doi: 10.1364/AOP.11.000067
    [101] BOZINOVIC N, YUE Y, REN Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548. doi: 10.1126/science.1237861
    [102] WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138
    [103] YAN Y, XIE G D, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [104] LEI T, ZHANG M, LI Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light:Science &Applications, 2015, 4(3): e257.
    [105] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780
    [106] SCOTT T F, KOWALSKI B A, SULLIVAN A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913-917. doi: 10.1126/science.1167610
    [107] LI L J, GATTASS R R, GERSHGOREN E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910-913. doi: 10.1126/science.1168996
    [108] GAN Z S, CAO Y Y, EVANS R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061
    [109] FISCHER J, WEGENER M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser &Photonics Reviews, 2013, 7(1): 22-44.
    [110] ISHIKAWA-ANKERHOLD H C, ANKERHOLD R, DRUMMEN G P C. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM[J]. Molecules, 2012, 17(4): 4047-4132. doi: 10.3390/molecules17044047
    [111] JOHNSON S A. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology[J]. WIREs Nanomedicine and Nanobiotechnology, 2015, 7(3): 266-281. doi: 10.1002/wnan.1300
    [112] FÜRHAPTER S, JESACHER A, BERNET S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694. doi: 10.1364/OPEX.13.000689
    [113] JESACHER A, FÜRHAPTER S, BERNET S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23): 233902. doi: 10.1103/PhysRevLett.94.233902
    [114] SITU G, PEDRINI G, OSTEN W. Spiral phase filtering and orientation-selective edge detection/enhancement[J]. Journal of the Optical Society of America A, 2009, 26(8): 1788-1797. doi: 10.1364/JOSAA.26.001788
    [115] ZHANG Y Y, WANG J K, ZHANG W H, et al. LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes[J]. Optics Express, 2018, 26(13): 17300-17311. doi: 10.1364/OE.26.017300
    [116] NEARY P L, WATNIK A T, JUDD K P, et al. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams[J]. Optics Communications, 2020, 474: 126058. doi: 10.1016/j.optcom.2020.126058
    [117] WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    [118] ZHAO W Y, LIU B Y, JIANG H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Optics Letters, 2016, 41(1): 147-150. doi: 10.1364/OL.41.000147
    [119] FANG X Y, REN H R, GU M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14(2): 102-108. doi: 10.1038/s41566-019-0560-x
    [120] KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258. doi: 10.1126/sciadv.1501258
    [121] HUO P CH, ZHANG CH, ZHU W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791-2798. doi: 10.1021/acs.nanolett.0c00471
    [122] REN H R, BRIERE G, FANG X Y, et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1
    [123] REN H R, FANG X Y, JANG J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955. doi: 10.1038/s41565-020-0768-4
    [124] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159. doi: 10.1103/PhysRevLett.24.156
    [125] FRIESE M E J, ENGER J, RUBINSZTEIN-DUNLOP H, et al. Optical angular-momentum transfer to trapped absorbing particles[J]. Physical Review A, 1996, 54(2): 1593-1596. doi: 10.1103/PhysRevA.54.1593
    [126] SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 1997, 22(1): 52-54. doi: 10.1364/OL.22.000052
    [127] WOERDEMANN M, ALPMANN C, DENZ C. Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101. doi: 10.1063/1.3561770
    [128] CHAPIN S C, GERMAIN V, DUFRESNE E R. Automated trapping, assembly, and sorting with holographic optical tweezers[J]. Optics Express, 2006, 14(26): 13095-13100. doi: 10.1364/OE.14.013095
    [129] PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81
    [130] TORNER L, TORRES J P, CARRASCO S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873-881. doi: 10.1364/OPEX.13.000873
    [131] KOZAWA Y, MATSUNAGA D, SATO S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92. doi: 10.1364/OPTICA.5.000086
    [132] CHEN L X, LEI J J, ROMERO J. Quantum digital spiral imaging[J]. Light:Science &Applications, 2014, 3(3): e153.
    [133] GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwood Village: Roberts & Company Publishers, 2005.
    [134] CRABTREE K, DAVIS J A, MORENO I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6): 1360-1367. doi: 10.1364/AO.43.001360
    [135] JESACHER A, FÜRHAPTER S, BERNET S, et al. Spiral interferogram analysis[J]. Journal of the Optical Society of America A, 2006, 23(6): 1400-1409. doi: 10.1364/JOSAA.23.001400
    [136] RITSCH-MARTE M. Orbital angular momentum light in microscopy[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Science, 2017, 375(2087): 20150437. doi: 10.1098/rsta.2015.0437
    [137] BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [138] LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    [139] KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    [140] NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
    [141] HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
    [142] ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    [143] WANG L, KRUK S, TANG H ZH, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505. doi: 10.1364/OPTICA.3.001504
    [144] YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi: 10.1364/AOP.3.000161
    [145] SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science &Applications, 2019, 8: 90.
  • 加载中
图(7)
计量
  • 文章访问数:  2477
  • HTML全文浏览量:  1458
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-04-19
  • 网络出版日期:  2021-05-24
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!