留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半导体激光器系统输出混沌激光研究进展

匡尚奇 郭祥帅 冯玉玲 李博涵 张依宁 于萍 庞爽

匡尚奇, 郭祥帅, 冯玉玲, 李博涵, 张依宁, 于萍, 庞爽. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学(中英文), 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
引用本文: 匡尚奇, 郭祥帅, 冯玉玲, 李博涵, 张依宁, 于萍, 庞爽. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学(中英文), 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216
Citation: KUANG Shang-qi, GUO Xiang-shuai, FENG Yu-ling, LI Bo-han, ZHANG Yi-ning, YU Ping, PANG Shuang. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. doi: 10.37188/CO.2020-0216

半导体激光器系统输出混沌激光研究进展

doi: 10.37188/CO.2020-0216
基金项目: 吉林省教育厅科学研究规划项目(No. JJKH20200728KJ);吉林省科技发展计划项目(No.20190201135JC)
详细信息
    作者简介:

    匡尚奇(1981—),男,吉林长春人,博士,副教授,硕士生导师,2004年、2009年于吉林大学分别获得学士、博士学位,主要从事量子光学与光学薄膜方面的研究,E-mail:ksq@cust.edu.cn

    郭祥帅(1997—),男,天津人,硕士研究生,2019年于齐齐哈尔大学获得学士学位,主要从事半导体激光器混沌方面的研究,E-mail:1114878977@qq.com

    冯玉玲(1965—),女,吉林四平人,博士,教授,博士生导师,1988年于吉林大学获得学士学位,2009年于长春理工大学获得博士学位,主要从事光学混沌方面的研究,E-mail:FYLCUST@163.com

  • 中图分类号: O415

Research progress of optical chaos in semiconductor laser systems

Funds: Supported by Scientific Research Planning Project of Education Department of Jilin Province (No. JJKH20200728KJ); Science and Technology Development Plan Project of Jilin Province (No. 20190201135JC)
More Information
  • 摘要: 混沌激光由于其类噪声的随机性和优良的抗干扰性,广泛应用于混沌保密通讯、激光雷达、光学检测等方面,而且半导体激光器自身体积小且结构稳定,成为产生混沌激光的主要激光器之一。但是,常规光反馈结构的半导体激光器系统输出的混沌激光信号带宽较窄且存在延时特征,这严重影响了混沌激光的应用。针对半导体激光器系统的上述问题,本文综合介绍了降低延时特征和优化混沌激光带宽的研究进展,对混沌保密通讯十分重要的混沌激光的同步性研究进展和半导体激光器系统输出的混沌激光在应用方面的研究进行了总结,并最终对半导体激光器系统输出的混沌激光的未来发展与应用前景进行展望。

     

  • 图 1  (a) 采用随机分布光栅反馈装置示意图;(b) 在光纤随机光栅中不同偏振情况下TDS的值随反馈比的变化[27]

    Figure 1.  (a) Schematic diagram of a device receiving feedback from a randomly distributed grating; (b) TDS values varying with the feedback ratio under different polarizations in FBG[27]

    图 2  (a)光学时间透镜处理混沌激光装置示意图;(b) 光学时间透镜模块输出混沌信号的有效带宽与相位调制指数的关系[30]

    Figure 2.  (a) Schematic diagram of the device using optical time lens to process chaotic laser device; (b) efficient bandwidth of the chaotic signal outputted by the optical time lens module versus the phase modulation index[30]

    图 3  (a)具有光注入的散射反馈半导体激光器系统装置示意图;(b)外腔反馈延迟的相关系数与光纤长度的关系(蓝线),红线表示混沌光信号本身的相关噪底[35]

    Figure 3.  (a)Schematic diagram of a scattering feedback semiconductor laser system with light injection; (b) correlation coefficient at the external cavity feedback delay as a function of the fiber length, which is represented by the blue line, the red line represents the correlation noise floor of the chaotic light signal itself[35]

    图 4  (a)具有外光注入的双路光反馈的半导体激光系统装置示意图;(b)两种系统输出混沌激光的延时特征值随滤波器带宽的变化[38]

    Figure 4.  (a) Schematic diagram of a semiconductor laser system with dual optical feedback under external light injection; (b) the time delay characteristic values varying with the filter bandwidth in the two systems[38]

    图 5  (a) 使用多模式SRL的基于光学混沌的同步和通信的示意图;(b)相关系数与相对失配率Δ的关系[39]

    Figure 5.  (a) Schematic diagram for optical chaos-based synchronization and communication using multimode SRL; (b) correlation index as a function of the relative mismatch ration Δ[39]

    图 6  (a)具有时滞的互耦合半导体激光器的模型,τ为光的传播延迟时间;(b) 实线与虚线分别表示激光器1与激光器2成为局部领先者的概率[49]

    Figure 6.  Model for mutually-coupled semiconductor lasers with a time delay, τ is the propagation delay time of the light; (b) the solid line and the dotted line respectively represent the probability that laser 1 or 2 is locally the leader[49]

    图 7  (a)激光二极管的三维混沌水下激光雷达系统原理图;(b)清洁水中淹没运动目标的相关迹线[53]

    Figure 7.  (a) Schematic setup of the 3D chaos underwater lidar system with a laser diode; (b) correlation traces of a submerged moving target in clean water[53]

    图 8  (a)探测系统示意图;(b)混沌激光经空杯、水和脂肪乳液的互相关峰值[13]

    Figure 8.  (a) Schematic of the detection system; (b) the cross-correlation peaks of chaotic laser passing through the empty cup, water and fat emulsion[13]

    表  1  单激光器混沌激光性能优化

    Table  1.   Optimization of chaos in the laser system

    Research instituteParameterMethods for improvementEvaluation function
    Ecole Supérieured’Electricitéτ,kap\ACF[15], DMI[15]
    Ecole Supérieured’Electricitéτ,kap,J\ACF[15,], DMI[15]
    Xidian Universitykap,τ,kpmelectronic componentACF[15], PE[16]
    City University of Hong KongΔf,kapchange optical feedback structureACF[15], BW[17]
    National Tsing Hua Universitykapsignal processingACF[15], DMI[15]
    Bangor UniversityJchange optical feedback structureBW[17]
    Université Paris-Saclaykap, τchange optical feedback structureBW[17]
    Taiyuan University of Technologyα\ACF[15], LPE[19]
    Changchun University of Science and Technologyτ, kap,J,Belectronic componentACF[15], BW[17]
    University of Ottawakapchange optical feedback structureACF[15]
    Taiyuan University of Technologykap,Jsignal processingACF[15], PE[16]
    下载: 导出CSV

    表  2  多个激光器系统输出混沌激光性能优化

    Table  2.   Optimization of chaos in systems composed of multiple lasers

    Research InstitutesParametersMethodsEvaluation functions
    Information Engineering UniversityJ1,J2f,kinj\ACF[15], DMI[15]
    Taiyuan University of TechnologyΔf,kinj\BW[17]
    Yantai Universitykinj,kap,α,εchange feedback structureACF[15]
    Taiyuan University of Technology\change feedback structureACF[15]
    University of Electronic Science and Technologykpmelectronic componentACF[15], DMI[15]
    Changchun University of Science and Technologyτ,kinj,kap,J,Λelectronic componentACF[15], DMI[15], BW[17]
    Changchun University of Science and Technologykinj,kap,J,electronic componentACF[15], BW[17]
    下载: 导出CSV
  • [1] MAIMAN T H, HOSKINS R H, D’HAENENS I J, et al. Stimulated optical emission in fluorescent solids. Ⅱ. Spectroscopy and stimulated emission in ruby[J]. Physical Review, 1961, 123(4): 1151-1157. doi: 10.1103/PhysRev.123.1151
    [2] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2): 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    [3] WEISS C O, GODONE A, OLAFSSON A. Routes to chaotic emission in a cw He-Ne laser[J]. Physical Review A, 1983, 28(2): 892-895. doi: 10.1103/PhysRevA.28.892
    [4] MUKAI T, OTSUKA K. New route to optical chaos: Successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J]. Physical Review Letters, 1985, 55(17): 1711-1714. doi: 10.1103/PhysRevLett.55.1711
    [5] LAVROV R, PEIL M, JACQUOT M, et al. Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization[J]. Physical Review E, 2009, 80(2): 026207. doi: 10.1103/PhysRevE.80.026207
    [6] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学,2019,12(1):48-58. doi: 10.3788/co.20191201.0048

    SUN SH M, FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi: 10.3788/co.20191201.0048
    [7] LANG R, KOBAYASHI K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 1980, 16(3): 347-355. doi: 10.1109/JQE.1980.1070479
    [8] TKACH R, CHRAPLYVY A. Regimes of feedback effects in 1.5 μm distributed feedback lasers[J]. Journal of Lightwave Technology, 1986, 4(11): 1655-1661. doi: 10.1109/JLT.1986.1074666
    [9] SIMPSON T B, LIU J M, GAVRIELIDES A, et al. Period-doubling cascades and chaos in a semiconductor laser with optical injection[J]. Physical Review A, 1995, 51(5): 4181-4185. doi: 10.1103/PhysRevA.51.4181
    [10] TANG S, LIU J M. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback[J]. IEEE Journal of Quantum Electronics, 2001, 37(3): 329-336. doi: 10.1109/3.910441
    [11] ZHANG M J, JI Y N, ZHANG Y N, et al. Remote radar based on chaos generation and radio over fiber[J]. IEEE Photonics Journal, 2014, 6(5): 7902412.
    [12] ARGYRIS A, SYVRIDIS D, LARGER L, et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 2005, 438(7066): 343-346. doi: 10.1038/nature04275
    [13] 吕艺辉, 杨玲珍, 李佳, 等. 混沌激光实现异质物大小和位置的光学检测[J]. 光学技术,2020,46(2):146-151.

    LV Y H, YANG L ZH, LI J, et al. Optical detection of the size and position of foreign object with chaotic laser[J]. Optical Technique, 2020, 46(2): 146-151. (in Chinese)
    [14] 乔丽君, 杨强, 柴萌萌, 等. 混沌半导体激光器研究进展[J]. 应用科学学报,2020,38(4):595-611. doi: 10.3969/j.issn.0255-8297.2020.04.006

    QIAO L J, YANG Q, CHAI M M, et al. Progress in chaotic semiconductor lasers[J]. Journal of Applied Sciences, 2020, 38(4): 595-611. (in Chinese) doi: 10.3969/j.issn.0255-8297.2020.04.006
    [15] UDALTSOV V S, LARGER L, GOEDGEBUER J P, et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 2005, 72(5): 373-377. doi: 10.1364/JOT.72.000373
    [16] LI N Q, PAN W, LOCQUET A, et al. Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection[J]. Optics Letters, 2015, 40(19): 4416-4419. doi: 10.1364/OL.40.004416
    [17] LIN F Y, LIU J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J]. Optics Communications, 2003, 221(1-3): 173-180. doi: 10.1016/S0030-4018(03)01466-4
    [18] LIN F Y, CHAO Y K, WU T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 2012, 48(8): 1010-1014. doi: 10.1109/JQE.2012.2198195
    [19] KANNO K, UCHIDA A. Consistency and complexity in coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2012, 86(6): 066202. doi: 10.1103/PhysRevE.86.066202
    [20] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 2007, 32(20): 2960-2962. doi: 10.1364/OL.32.002960
    [21] RONTANI D, LOCQUET A, SCIAMANNA M, et al. Time-delay identification in a chaotic semiconductor laser with optical feedback: a dynamical point of view[J]. IEEE Journal of Quantum Electronics, 2009, 45(7): 879-1891. doi: 10.1109/JQE.2009.2013116
    [22] OHTSUBO J. Semiconductor Lasers: Stability, Instability and Chaos[M]. Heidelberg: Springer, 2013.
    [23] 韩韬, 刘香莲, 李璞, 等. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响[J]. 物理学报,2017,66(12):124203. doi: 10.7498/aps.66.124203

    HAN T, LIU X L, LI P, et al. Influence of the linewidth enhancement factor on the characteristics of the random number extracted from the optical feedback semiconductor laser[J]. Acta Physica Sinica, 2017, 66(12): 124203. (in Chinese) doi: 10.7498/aps.66.124203
    [24] 李增, 冯玉玲, 王晓茜, 等. 半导体激光器输出混沌光的延时特性和带宽[J]. 物理学报,2018,67(14):140501. doi: 10.7498/aps.67.20180035

    LI Z, FENG Y L, WANG X Q, et al. Time delay characteristics and bandwidth of chaotic laser from semiconductor laser[J]. Acta Physica Sinica, 2018, 67(14): 140501. (in Chinese) doi: 10.7498/aps.67.20180035
    [25] ZHAO A K, JIANG N, LIU SH Q, et al. Wideband complex-enhanced chaos generation using a semiconductor laser subject to delay-interfered self-phase-modulated feedback[J]. Optics Express, 2019, 27(9): 12336-12348. doi: 10.1364/OE.27.012336
    [26] LI S S, CHAN S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 541-552. doi: 10.1109/JSTQE.2015.2427521
    [27] XU Y P, ZHANG M J, ZHANG L, et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J]. Optics Letters, 2017, 42(20): 4107-4110. doi: 10.1364/OL.42.004107
    [28] HONG Y H, CHEN X F, SPENCER P S, et al. Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator[J]. IEEE Journal of Quantum Electronics, 2015, 51(3): 1200106.
    [29] CHENG C H, CHEN Y CH, LIN F Y. Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning[J]. Optics Express, 2015, 23(3): 2308-2319. doi: 10.1364/OE.23.002308
    [30] JIANG N, WANG CH, XUE CH P, et al. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens[J]. Optics Express, 2017, 25(13): 14359-14367. doi: 10.1364/OE.25.014359
    [31] 孙巍阳, 张胜海, 吴天安, 等. 双光反馈双光注入混沌半导体激光器延时特征峰抑制[J]. 激光与光电子学进展,2016,53(12):121406.

    SUN W Y, ZHANG SH H, WU T A, et al. Delay characteristic peak suppression of bioptical feedback bioptical injection chaotic semiconductor laser[J]. Laser &Optoelectronics Progress, 2016, 53(12): 121406. (in Chinese)
    [32] QIAO L J, LV T SH, XU Y, et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 2019, 44(22): 5394-5397. doi: 10.1364/OL.44.005394
    [33] KANNO K, UCHIDA A, BUNSEN M. Complexity and bandwidth enhancement in unidirectionally coupled semiconductor lasers with time-delayed optical feedback[J]. Physical Review E, 2016, 93(3): 032206. doi: 10.1103/PhysRevE.93.032206
    [34] MU P H, HE P F, LIU Q L, et al. Numerical study of the time-delay signature in chaos optical injection system with phase-conjugate feedback[J]. Optik, 2019, 179: 71-75. doi: 10.1016/j.ijleo.2018.10.164
    [35] ZHANG J ZH, LI M W, WANG A B, et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J]. Applied Optics, 2018, 57(22): 6314-6317. doi: 10.1364/AO.57.006314
    [36] XUE CH P, JIANG N, LV Y X, et al. Security-enhanced chaos communication with time-delay signature suppression and phase encryption[J]. Optics Letters, 2016, 41(16): 3690-3693. doi: 10.1364/OL.41.003690
    [37] 张依宁, 徐艾诗, 冯玉玲, 等. 光电反馈半导体激光器输出光的混沌特性[J]. 光学学报,2020,40(12):1214001. doi: 10.3788/AOS202040.1214001

    ZHANG Y N, XU A SH, FENG Y L, et al. Chaotic characteristics of output light by photoelectric feedback semiconductor laser[J]. Acta Optica Sinica, 2020, 40(12): 1214001. (in Chinese) doi: 10.3788/AOS202040.1214001
    [38] 张依宁, 冯玉玲, 王晓茜, 等. 半导体激光器混沌输出的延时特征和带宽[J]. 物理学报,2020,69(9):090501. doi: 10.7498/aps.69.20191881

    ZHANG Y N, FENG Y L, WANG X Q, et al. Time delay signature and bandwidth of chaotic laser output from semiconductor laser[J]. Acta Physica Sinica, 2020, 69(9): 090501. (in Chinese) doi: 10.7498/aps.69.20191881
    [39] PECORA L M, CARROLL T L. Driving systems with chaotic signals[J]. Physical Review A, 1991, 44(4): 2374-2383. doi: 10.1103/PhysRevA.44.2374
    [40] KANG Z X, SUN J, MA L, et al. Multimode synchronization of chaotic semiconductor ring laser and its potential in chaos communication[J]. IEEE Journal of Quantum Electronics, 2014, 50(3): 148-157. doi: 10.1109/JQE.2014.2299593
    [41] CAI X L, HO Y L D, MEZOSI G, et al. Frequency-domain model of longitudinal mode interaction in semiconductor ring lasers[J]. IEEE Journal of Quantum Electronics, 2012, 48(3): 406-418. doi: 10.1109/JQE.2012.2182759
    [42] JAYAPRASATH E, HOU Y SH, WU ZH M, et al. Anticipation in the polarization chaos synchronization of uni-directionally coupled vertical-cavity surface-emitting lasers with polarization-preserved optical injection[J]. IEEE Access, 2018, 6: 58482-58490. doi: 10.1109/ACCESS.2018.2874625
    [43] CHEN X F, HU H P. Chaos synchronisation of electro-optical chaotic systems with partially different parameters[J]. IET Optoelectronics, 2016, 10(3): 89-93. doi: 10.1049/iet-opt.2015.0039
    [44] AL BAYATI B M, AHMAD A K, AL NAIMEE K A M. Effect of control parameters on chaos synchronization by means of optical feedback[J]. Optics Communications, 2020, 472: 126032. doi: 10.1016/j.optcom.2020.126032
    [45] YANG L, PAN W, YAN L SH, et al. Mapping the dynamic complexity and synchronization in unidirectionally coupled external-cavity semiconductor lasers using permutation entropy[J]. Journal of the Optical Society of America B, 2015, 32(7): 1463-1470. doi: 10.1364/JOSAB.32.001463
    [46] SASAKI T, KAKESU I, MITSUI Y, et al. Common-signal-induced synchronization in photonic integrated circuits and its application to secure key distribution[J]. Optics Express, 2017, 25(21): 26029-26044.
    [47] BÖHM F, SAHAKIAN S, DOOMS A, et al. Stable high-speed encryption key distribution via synchronization of chaotic optoelectronic oscillators[J]. Physical Review Applied, 2020, 13: 064014. doi: 10.1103/PhysRevApplied.13.064014
    [48] XIANG SH Y, HAN Y N, WANG H N, et al. Zero-lag chaos synchronization properties in a hierarchical tree-type network consisting of mutually coupled semiconductor lasers[J]. Nonlinear Dynamics, 2020, 99(4): 2893-2906. doi: 10.1007/s11071-020-05479-9
    [49] KANNO K, HIDA T, UCHIDA A, et al. Spontaneous exchange of leader-laggard relationship in mutually coupled synchronized semiconductor lasers[J]. Physical Review E, 2017, 95(5): 052212. doi: 10.1103/PhysRevE.95.052212
    [50] 李娟, 冯勇, 杨旭强, 等. 三维可逆混沌映射图像加密及其优化算法[J]. 光学 精密工程,2008,16(9):1738-1745.

    LI J, FENG Y, YANG X Q, et al. Invertible chaotic 3D map based image encryption and its optimized algorithm[J]. Optics and Precision Engineering, 2008, 16(9): 1738-1745. (in Chinese)
    [51] 刘群, 刘崇, 朱小磊, 等. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学,2020,13(1):148-155. doi: 10.3788/co.20201301.0148

    LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2020, 13(1): 148-155. (in Chinese) doi: 10.3788/co.20201301.0148
    [52] ZHONG D ZH, XU G L, LUO W, et al. Real-time multi-target ranging based on chaotic polarization laser radars in the drive-response VCSELs[J]. Optics Express, 2017, 25(18): 21684-21704. doi: 10.1364/OE.25.021684
    [53] WANG B J, GUO ZH W, SHEN ZH M, et al. Underwater 3D imaging utilizing 520 nm chaotic lidar[J]. Journal of Russian Laser Research, 2020, 41(4): 399-405. doi: 10.1007/s10946-020-09892-8
    [54] 唐士文, ANNOVAZZI-LODI V, 王昭. 光学密码术最新进展[J]. 中国光学,2014,7(1):89-97.

    TANG SH W, ANNOVAZZI-LODI V, WANG ZH. Recent advances in optical cryptography[J]. Chinese Optics, 2014, 7(1): 89-97. (in Chinese)
    [55] KE J X, YI L L, XIA G Q, et al. Chaotic optical communications over 100 km fiber transmission at 30 Gb/s bit rate[J]. Optics Letters, 2018, 43(6): 1323-1326. doi: 10.1364/OL.43.001323
    [56] LI Q L, LU SH SH, BAO Q, et al. Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback[J]. Applied Optics, 2018, 57(2): 251-257. doi: 10.1364/AO.57.000251
    [57] 郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(6):1235-1248. doi: 10.3788/co.20191206.1235

    GUO SH, SU H, HUANG X C, et al. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. (in Chinese) doi: 10.3788/co.20191206.1235
    [58] SHAHZADI R, ANWAR S M, QAMAR F, et al. Secure EEG signal transmission for remote health monitoring using optical chaos[J]. IEEE Access, 2019, 7: 57769-57778. doi: 10.1109/ACCESS.2019.2912548
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1609
  • HTML全文浏览量:  635
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-05-14
  • 刊出日期:  2021-09-18

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!