留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变温下材料表面近红外双向反射分布函数的测量研究

马王杰慧 刘彦磊 陈志影 刘玉芳

马王杰慧, 刘彦磊, 陈志影, 刘玉芳. 变温下材料表面近红外双向反射分布函数的测量研究[J]. 中国光学(中英文), 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256
引用本文: 马王杰慧, 刘彦磊, 陈志影, 刘玉芳. 变温下材料表面近红外双向反射分布函数的测量研究[J]. 中国光学(中英文), 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256
MA Wang-jiehui, LIU Yan-lei, CHEN Zhi-ying, LIU Yu-fang. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256
Citation: MA Wang-jiehui, LIU Yan-lei, CHEN Zhi-ying, LIU Yu-fang. Near-infrared BRDF of material surfaces at varying temperatures[J]. Chinese Optics, 2020, 13(5): 1115-1123. doi: 10.37188/CO.2019-0256

变温下材料表面近红外双向反射分布函数的测量研究

doi: 10.37188/CO.2019-0256
基金项目: 国家自然科学基金(No. 61627818,No. 61675065,No. U1804261,No. 61905068);河南省高等学校重点科研项目(No. 20A140015)
详细信息
    作者简介:

    马王杰慧(1996—),女,河南许昌人,硕士研究生,2018年于河南师范大学获得学士学位,主要从事目标表面双向反射分布函数测量与应用方面的研究。E-mail:mwmw9691@163.com

    刘玉芳(1963—),男,河南三门峡人,博士,教授,1987于河南师范大学获得学士学位,1990年于四川大学获得硕士学位,2004年于大连理工大学获得博士学位,主要从事红外物理与技术方面的研究。E-mail:yf-liu@htu.cn

  • 中图分类号: O433.1

Near-infrared BRDF of material surfaces at varying temperatures

Funds: Supported by National Natural Science Foundation of China (No. 61627818, No. 61675065, No. U1804261, No. 61905068); Key Scientific Research Projects of Henan Province Colleges and Universities (No. 20A140015)
More Information
  • 摘要: 基于自行研制的双向反射分布函数(BRDF)测量装置,采用绝对测量方法在20~800 ℃的温度范围内测量了粗糙黄铜表面在近红外波段下的光谱偏振双向反射分布函数,分析了温度对BRDF的影响。结果表明,温度对黄铜表面的BRDF有明显的影响,随着温度的升高,BRDF整体呈现出稳定-增大-减小的变化趋势。对不同温度下材料表面的场扫描电镜、粗糙度和X射线衍射测试表明,温度对样品表面BRDF产生影响的主要原因是表面形貌和化学成分的改变。

     

  • 图 1  双向反射分布函数的几何关系图

    Figure 1.  Geometric relationship diagram of incident and reflected beams for BRDF

    图 2  BRDF测量装置设计图

    Figure 2.  Design scheme of the BRDF measurement apparatus

    图 3  平板加热器示意图。(a)加热器和温控器;(b)样品腔

    Figure 3.  Schematic diagram of plate heater. (a) heater and thermostat; (b) sample cavity

    图 4  θi=45°,λ=2 000 nm时,样品的面内BRDF。(a)和(b)分别为s偏振和p偏振测量结果

    Figure 4.  The BRDF of sample at θi=45° and λ=2 000 nm. (a) s-polarized (b) p-polarized

    图 5  样品镜面反射方向的s偏振BRDF。(a)~(d)依次为入射角 15°、30°、45°和60°的测量结果

    Figure 5.  The s-polarized BRDF of sample at the different specular reflection directions. (a) θi=15° (b) θi=30° (c) θi=45° (d) θi=60°

    图 6  样品镜面反射方向的p偏振BRDF。(a)~(d)依次为入射角15°、30°、45°和60°的测量结果

    Figure 6.  The p-polarized BRDF of sample at different specular reflection directions. (a) θi=15° (b) θi=30° (c) θi=45° (d) θi=60°

    图 7  λ=2000 nm时,样品镜面反射方向的反射率和BRDF。(a)~(d)依次为s偏振反射率、s偏振BRDF、p偏振反射率和p偏振BRDF

    Figure 7.  The polarized reflectivity and BRDF of sample at the specular reflection direction and λ=2000 nm. (a) s-polarized reflectivity; (b) s-polarized BRDF; (c) p-polarized reflectivity; (d) p-polarized BRDF

    图 8  不同温度下样品表面的显微照片

    Figure 8.  Scanning electron micrographs of sample surface at different temperatures

    图 9  不同温度下样品表面的X射线衍射图和表面成分

    Figure 9.  X-ray diffraction pattern and chemical composition of sample surface at different temperatures

    表  1  不同温度下的升温时间和测量时间

    Table  1.   Heating time and measuring time at different temperatures

    目标温度/℃升温时间/min测量时间/min
    1002.715.2
    2003.015.2
    3003.115.2
    4003.415.2
    5003.715.2
    6004.115.2
    7004.615.2
    8005.115.2
    下载: 导出CSV

    表  2  不同温度下样品表面的粗糙度

    Table  2.   Roughness values of the sample surface at different temperatures

    温度/℃Ra/μmRz/μmRq/μm
    200.1551.2230.202
    2000.1591.2540.207
    3000.1581.2490.210
    3500.1611.2430.208
    4000.1851.3030.240
    5000.1871.4790.247
    6000.2231.5930.288
    7000.2581.7690.333
    8000.3562.2940.445
    下载: 导出CSV
  • NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J]. Applied Optics, 1965, 4(7): 767-775. doi: 10.1364/AO.4.000767
    ELLIS K K. Polarimetric bidirectional reflectance distribution function of glossy coatings[J]. Journal of the Optical Society of America A, 1996, 13(8): 1758-1762. doi: 10.1364/JOSAA.13.001758
    SANDMEIER S, MÜLLER C, HOSGOOD B, et al. Physical mechanisms in hyperspectral brdf data of grass and watercress[J]. Remote Sensing of Environment, 1998, 66(2): 222-233. doi: 10.1016/S0034-4257(98)00060-1
    SCHAAF C B, GAO F, STRAHLER A H, et al. First operational BRDF, albedo nadir reflectance products from MODIS[J]. Remote Sensing of Environment, 2002, 83(1-2): 135-148. doi: 10.1016/S0034-4257(02)00091-3
    SCHAEPMAN-STRUB G, SCHAEPMAN M E, PAINTER T H, et al. Reflectance quantities in optical remote sensing-definitions and case studies[J]. Remote Sensing of Environment, 2006, 103(1): 27-42. doi: 10.1016/j.rse.2006.03.002
    MARSCHNER S R, WESTIN S H, LAFORTUNE E, et al. Image-based bidirectional reflectance distribution function measurement[J]. Applied Optics, 2000, 39(16): 2592-2600. doi: 10.1364/AO.39.002592
    BOUSQUET L, LACHÉRADE S, JACQUEMOUD S, et al. Leaf BRDF measurements and model for specular and diffuse components differentiation[J]. Remote Sensing of Environment, 2005, 98(2-3): 201-211. doi: 10.1016/j.rse.2005.07.005
    张百顺, 刘文清, 魏庆农, 等. 基于双向反射分布函数实验测量的目标散射特性的分析[J]. 光学技术,2006,32(2):180-182. doi: 10.3321/j.issn:1002-1582.2006.02.006

    ZHANG B SH, LIU W Q, WEI Q N, et al. Analysis of scattering characteristic of the sample based on BRDF experiment measurements[J]. Optical Technique, 2006, 32(2): 180-182. (in Chinese) doi: 10.3321/j.issn:1002-1582.2006.02.006
    LELOUP F B, FORMENT S, DUTRÉ P, et al. Design of an instrument for measuring the spectral bidirectional scatter distribution function[J]. Applied Optics, 2008, 47(29): 5454-5467. doi: 10.1364/AO.47.005454
    WANG H Y, ZHANG W, DONG A T. Measurement and modeling of Bidirectional Reflectance Distribution Function (BRDF) on material surface[J]. Measurement, 2013, 46(9): 3654-3661. doi: 10.1016/j.measurement.2013.07.008
    GATEBE C K, KING M D. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications[J]. Remote Sensing of Environment, 2016, 179: 131-148. doi: 10.1016/j.rse.2016.03.029
    KALLEL A. Leaf polarized BRDF simulation based on Monte Carlo 3-D vector RT modeling[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 202-224. doi: 10.1016/j.jqsrt.2018.09.033
    PELTONIEMI J I, KAASALAINEN S, NÄRÄNEN J, et al. BRDF measurement of understory vegetation in pine forests: dwarf shrubs, lichen, and moss[J]. Remote Sensing of Environment, 2005, 94(3): 343-354. doi: 10.1016/j.rse.2004.10.009
    BARIBEAU R, NEIL W S, CÔTÉ É. Development of a robot-based gonioreflectometer for spectral BRDF measurement[J]. Journal of Modern Optics, 2009, 56(13): 1497-1503. doi: 10.1080/09500340903045702
    JOHANSSON N, NEUMAN M, ANDERSSON M, et al. Influence of finite-sized detection solid angle on bidirectional reflectance distribution function measurements[J]. Applied Optics, 2014, 53(6): 1212-1220. doi: 10.1364/AO.53.001212
    LIU Y L, YU K, LIU Z L, et al. Polarized BRDF measurement of steel E235B in the near-infrared region: based on a self-designed instrument with absolute measuring method[J]. Infrared Physics &Technology, 2018, 91: 78-84.
    戴景民, 赵忠义, 李颖. 可变温条件下材料表面的双向反射分布函数测量[J]. 应用光学,2008,29(3):321-325.

    DAI J M, ZHAO ZH Y, LI Y. BRDF measurement of material surface at variable temperatures[J]. Journal of Applied Optics, 2008, 29(3): 321-325. (in Chinese)
    关洪宇, 张文杰, 赵军明, 等. 钛合金粗糙表面的偏振光及变温BRDF特性[J]. 红外与毫米波学报,2016,35(1):109-115. doi: 10.11972/j.issn.1001-9014.2016.01.018

    GUAN H Y, ZHANG W J, ZHAO J M, et al. Polarization and temperature dependent BRDF of titanium alloy rough surface[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 109-115. (in Chinese) doi: 10.11972/j.issn.1001-9014.2016.01.018
    BAILEY A W, EARLY E A, KEPPLER K S, et al. Dynamic bidirectional reflectance distribution functions: measurement and representation[J]. Journal of Laser Applications, 2008, 20(1): 22-36. doi: 10.2351/1.2831632
    李振, 刘寒蒙, 姚志霞, 等. 二氧化钛纳米管阵列/钛pH电极制备与表征[J]. 分析化学,2018,46(12):1961-1967. doi: 10.11895/j.issn.0253-3820.181459

    LI ZH, LIU H M, YAO ZH X, et al. Preparation and characterization of titanium dioxide nanotube array/titanium pH electrode[J]. Chinese Journal of Analytical Chemistry, 2018, 46(12): 1961-1967. (in Chinese) doi: 10.11895/j.issn.0253-3820.181459
    唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO2NRs@ZnIn2S4 NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.

    TANG X Q, CHEN Y Y, LUO Y N, et al. A novel glutathione photoelectrochemical sensor based on titanium dioxide Nanorods@ZnIn2S4 Nanosheets nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese)
    王帅, 徐俊平, 陈厚孚, 等. 金属(氢)氧化物参与木质素微生物转化形成类胡敏酸的结构特征分析[J]. 分析化学,2019,47(11):1809-1815.

    WANG SH, XU J P, CHEN H F, et al. Structural characteristics of Humic-like acid from microbial transformation of lignin participated by metal (hydro) oxides[J]. Chinese Journal of Analytical Chemistry, 2019, 47(11): 1809-1815. (in Chinese)
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1681
  • HTML全文浏览量:  541
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-02-19
  • 网络出版日期:  2020-09-10
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!