留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光多普勒振动信号的时频分析

陈鸿凯 王挺峰 吴世松 李远洋 郭劲 吴皓

陈鸿凯, 王挺峰, 吴世松, 李远洋, 郭劲, 吴皓. 激光多普勒振动信号的时频分析[J]. 中国光学(中英文), 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251
引用本文: 陈鸿凯, 王挺峰, 吴世松, 李远洋, 郭劲, 吴皓. 激光多普勒振动信号的时频分析[J]. 中国光学(中英文), 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251
CHEN Hong-kai, WANG Ting-feng, WU Shi-song, LI Yuan-yang, GUO Jin, WU Hao. Time-frequency analysis of laser doppler radar vibration signals[J]. Chinese Optics, 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251
Citation: CHEN Hong-kai, WANG Ting-feng, WU Shi-song, LI Yuan-yang, GUO Jin, WU Hao. Time-frequency analysis of laser doppler radar vibration signals[J]. Chinese Optics, 2020, 13(5): 1014-1022. doi: 10.37188/CO.2019-0251

激光多普勒振动信号的时频分析

doi: 10.37188/CO.2019-0251
基金项目: 国家自然科学基金项目(No. 61805234)
详细信息
    作者简介:

    陈鸿凯(1995—),男,福建福州人,硕士研究生,2017年于山东大学获得学士学位,主要从事激光多普勒雷达探测及雷达信号处理方面的研究。E-mail:chenhk_sdu@163.com

    王挺峰(1977—),男,山东文登人,博士,研究员,博士生导师,1999年于原吉林工业大学获得学士学位,2002年于吉林大学获得硕士学位,2005年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事激光应用与光电总体方面的研究。E-mail:wangtingfeng@ciomp.ac.cn

  • 中图分类号: TN958.95

Time-frequency analysis of laser doppler radar vibration signals

Funds: Supported by National Natural Science Foundation of China (No. 61805234)
More Information
  • 摘要: 激光多普勒雷达实际测得的振动信号绝大多数都是时变信号,而基于傅立叶变换的时频分析方法是处理时变信号的有利工具。本文针对激光多普勒雷达测得的实际振动信号,比较了魏格纳-维利分布、平滑伪魏格纳-维利分布、频谱图、波恩-约旦分布和扩展修正B分布5种形式的时频分析性能。利用激光多普勒雷达测量实际单音响产生的啁啾信号振动、双音响产生的二分量啁啾信号振动、以及成年男性心跳振动3种振动,分析了时频图的分辨率和交叉项抑制情况,并通过计算时频聚集度指数,比较了5种分布情况下振动的分析性能。实验证明,扩展修正B分布的性能优于其他4种时频分布,扩展修正B分布更适合应用于激光多普勒雷达材料共振频率探测和心跳检测领域。

     

  • 图 1  激光雷达探测原理图

    Figure 1.  Schematic diagram of laser lidar detection

    图 2  全光纤相干激光多普勒雷达原理图

    Figure 2.  Block diagram of all fiber coherent laser Doppler radar

    图 3  双声光调制相干激光多普勒雷达原理图

    Figure 3.  Block diagram of coherent laser Doppler radar with double acoustic optic modulation

    图 4  双声光调制相干激光多普勒雷达实验装置图

    Figure 4.  Experimental device of coherent laser Doppler radar with double acoustic optic modulation

    图 5  单分量啁啾信号的振动时域图及其时频分布

    Figure 5.  Time domain and time frequency distribution of single component chirps

    图 6  二分量啁啾信号振动时域图及其时频分布

    Figure 6.  Time domain and time frequency distribution of two component chirps vibration

    图 7  成年男性心跳振动时域图

    Figure 7.  Time domain diagram of adult male heatbeat vibration

    图 8  成年男性心跳振动时频分布

    Figure 8.  Time frequency distribution of adult male heatbeat vibration

    表  1  单分量啁啾信号的振动时频聚集度评价

    Table  1.   Evaluation of time frequency concentration of single component chirps vibration

    时频分布WVDSPWVDSPECBJDEMBD
    评价指数1.89×10−45.05×10−52.88×10−51.97×10−42.12×10−4
    下载: 导出CSV

    表  2  二分量啁啾信号振动时频聚集度评价

    Table  2.   Evaluation of time frequency concentration of two component chirp vibration

    时频分布WVDSPWVDSPECBJDEMBD
    评价指数8.88×10−57.12×10−51.04×10−59.16×10−51.08×10−4
    下载: 导出CSV

    表  3  成年男性心跳振动时频聚集度评价

    Table  3.   Evaluation of time frequency concentration of adult male heatbeat vibration

    时频分布WVDSPWVDSPECBJDEMBD
    评价指数2.67×10−43.07×10−44.00×10−44.94×10−45.56×10−4
    下载: 导出CSV
  • WAZ A T, KACZMAREK P R, ABRAMSKI K M. Laser–fibre vibrometry at 1550 nm[J]. Measurement Science and Technology, 2009, 20(10): 105301. doi: 10.1088/0957-0233/20/10/105301
    甄佳奇, 仲维丹, 布音嘎日迪, 等. 正弦调制多光束激光外差测量压电材料电致伸缩系数[J]. 发光学报,2017,38(12):1661-1667. doi: 10.3788/fgxb20173812.1661

    ZHEN J Q, ZHONG W D, BU Y, et al. Piezoelectric material electrostriction coefficient measurement method combined sinusoidal modulation with multi-beam laser heterodyne[J]. Chinese Journal of Luminescence, 2017, 38(12): 1661-1667. (in Chinese) doi: 10.3788/fgxb20173812.1661
    陈家键, 胡慧珠, 缪立军, 等. 双频激光干涉三自由度微振动测量系统[J]. 光学 精密工程,2019,27(7):1435-1443. doi: 10.3788/OPE.20192707.1435

    CHEN J J, HU H ZH, MIAO L J, et al. Three-degree-of-freedom micro-vibration measurement system based on dual-frequency laser interference[J]. Optics and Precision Engineering, 2019, 27(7): 1435-1443. (in Chinese) doi: 10.3788/OPE.20192707.1435
    GABOR D. Theory of communication. Part 1: the analysis of information[J]. Journal of the Institution of Electrical Engineers - Part III:Radio and Communication Engineering, 1946, 93(26): 429-441. doi: 10.1049/ji-3-2.1946.0074
    ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091. doi: 10.1109/78.330368
    COHEN L. Generalized phase-space distribution functions[J]. Journal of Mathematical Physics, 1966, 7(5): 781-786. doi: 10.1063/1.1931206
    BOASHASH B. Time Frequency Signal Analysis and Processing: A Comprehensive Reference[M]. Amsterdam: Elsevier, 2003.
    BOASHASH B, BEN-JABEUR T. Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection[C]. Proceedings of the 2012 11th International Conference on Information Science, Signal Processing and Their Applications, IEEE, 2012: 354-359.
    VAN EEDEN W D, DE VILLIERS J P, BERNDT R J, et al. Micro-Doppler radar classification of humans and animals in an operational environment[J]. Expert Systems with Applications, 2018, 102: 1-11. doi: 10.1016/j.eswa.2018.02.019
    GAO Y Q, CHEN W H, YANG B, et al. Identifying users based on time-frequency characteristics[J]. Journal of Physics:Conference Series, 2019, 1302(4): 042035.
    LIU J L, WANG S F, ZHENG J Y, et al. Time-frequency signal processing for integrity assessment and damage localization of concrete piles[J]. International Journal of Structural Stability and Dynamics, 2020, 20(2): 2050020. doi: 10.1142/S0219455420500200
    MAJHI S, MUKHERJEE A, GEORGE N V, et al. Corrosion detection in steel bar: a time-frequency approach[J]. NDT &E International, 2019, 107: 102150.
    QI P F, WANG Y C. Seismic time–frequency spectrum analysis based on local polynomial Fourier transform[J]. Acta Geophysica, 2020, 68(1): 1-17. doi: 10.1007/s11600-019-00377-0
    IMADUDDIN S M, LAROVERE K L, KUSSMAN B D, et al. A time-frequency approach for cerebral embolic load monitoring[J]. IEEE Transactions on Biomedical Engineering, 2020, 67(4): 1007-1018. doi: 10.1109/TBME.2019.2927709
    谢斌, 夏立新. 伪Wigner-Ville分布在心电信号时频分析中的应用[J]. 现代信息科技,2019,3(12):56-57, 60. doi: 10.3969/j.issn.2096-4706.2019.12.021

    XIE B, XIA L X. Application of pseudo Wigner-Ville distribution in time-frequency analysis of ECG signals[J]. Modern Information Technology, 2019, 3(12): 56-57, 60. (in Chinese) doi: 10.3969/j.issn.2096-4706.2019.12.021
    饶震红, 王明安, 陈蓁蓁, 等. 柠檬黄与玉米醇溶蛋白的相互作用研究[J]. 发光学报,2019,40(4):511-519. doi: 10.3788/fgxb20194004.0511

    RAO ZH H, WANG M A, CHEN ZH ZH, et al. Interaction between tartrazine and zein[J]. Chinese Journal of Luminescence, 2019, 40(4): 511-519. (in Chinese) doi: 10.3788/fgxb20194004.0511
    王云鹏, 胡以华, 雷武虎, 等. 基于激光回波时频图纹理特征的飞机目标分类方法[J]. 光学学报,2017,37(11):1128004. doi: 10.3788/AOS201737.1128004

    WANG Y P, HU Y H, LEI W H, et al. Aircraft target classification method based on texture feature of laser echo time-frequency image[J]. Acta Optica Sinica, 2017, 37(11): 1128004. (in Chinese) doi: 10.3788/AOS201737.1128004
    王云鹏, 胡以华, 雷武虎, 等. 典型旋翼形状参数微多普勒激光探测计算方法[J]. 红外与激光工程,2018,47(9):0906003. doi: 10.3788/IRLA201847.0906003

    WANG Y P, HU Y H, LEI W H, et al. Algorithm of typical rotor shape parameters by micro-Doppler laser detection[J]. Infrared and Laser Engineering, 2018, 47(9): 0906003. (in Chinese) doi: 10.3788/IRLA201847.0906003
    LÜ T, GUO J, ZHANG H Y, et al. Acquirement and enhancement of remote speech signals[J]. Optoelectronics Letters, 2017, 13(4): 275-278. doi: 10.1007/s11801-017-7059-9
    KURVINEN E, JOHN M, MIKKOLA A. Measurement and evaluation of natural frequencies of bulk ice plate using scanning laser Doppler vibrometer[J]. Measurement, 2020, 150: 107091. doi: 10.1016/j.measurement.2019.107091
    李晴棉, 李也凡, 何大伟, 等. 光外差电信号接收机[J]. 发光学报,1998,19(1):82-84. doi: 10.3321/j.issn:1000-7032.1998.01.017

    LI Q M, LI Y F, HE D W, et al. Optic heterodyning electronic signals receiving device[J]. Chinese Journal of Luminescence, 1998, 19(1): 82-84. (in Chinese) doi: 10.3321/j.issn:1000-7032.1998.01.017
    张晓琳, 唐文彦, 孙和义. 水下声信号的激光干涉测量[J]. 光学 精密工程,2010,18(4):809-815.

    ZHANG X L, TANG W Y, SUN H Y. Laser interferometry of underwater acoustic signals[J]. Optics and Precision Engineering, 2010, 18(4): 809-815. (in Chinese)
    刘立生, 张合勇, 王挺峰, 等. 激光外差探测对振动目标多普勒频谱成像[J]. 光学 精密工程,2015,23(6):1508-1515. doi: 10.3788/OPE.20152306.1508

    LIU L SH, ZHANG H Y, WANG T F, et al. Doppler spectrum imaging of vibrating target using laser heterodyne detection[J]. Optics and Precision Engineering, 2015, 23(6): 1508-1515. (in Chinese) doi: 10.3788/OPE.20152306.1508
    JONES D L, PARKS T W. A high resolution data-adaptive time-frequency representation[J]. IEEE Transactions on Acoustics,Speech,and Signal Processing, 1990, 38(12): 2127-2135. doi: 10.1109/29.61539
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1911
  • HTML全文浏览量:  548
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 修回日期:  2020-02-22
  • 网络出版日期:  2020-09-09
  • 刊出日期:  2020-10-05

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!