[1] MA X M, YE H G, DUAN X Y, et al.. Abnormal gas pressure sensitivity of the visible emission in ZnO quantum dots prepared by improved sol-gel method:the role of surface polarity[J]. RSC Advances, 2017, 7(48):29992-29997. doi: 10.1039/C7RA01917C
[2] HUAN X, WANG M, WILLINGER M G, et al.. Assembly of three-dimensional hetero-epitaxial ZnO/ZnS core/shell nanorod and single crystalline hollow ZnS nanotube arrays[J]. ACS Nano, 2012, 6(8):7333-7339. doi: 10.1021/nn3024514
[3] 黄海平, 吕连连, 陈重镇, 等.基于多壁碳纳米管-氧化钨纳米复合材料的多巴胺电化学传感器[J].分析化学, 2018, 46(5):765-772. http://d.old.wanfangdata.com.cn/Periodical/fxhx201805021

HUANG H P, LV L L, CHEN ZH ZH, et al.. Electrochemical dopamine sensor based on multi-walled carbon nanotubes-tungsten oxide nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2018, 46(5):765-772.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201805021
[4] CHEN R, YE Q L, HE T CH, et al.. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires[J]. Nano Letters, 2013, 13(2):734-739. doi: 10.1021/nl304433m
[5] YAN J, FANG X SH, ZHANG L D, et al.. Structure and cathodo luminescence of individual ZnS/ZnO biaxial nanobelt heterostructures[J]. Nano Letters, 2008, 8(9):2794-2799. doi: 10.1021/nl801353c
[6] JEONG S, KIM M W, JO Y R, et al.. Crystal-structure-dependent piezotronic and piezo-phototronic effects of ZnO/ZnS core/shell nanowires for enhanced electrical transport and photosensing performance[J]. ACS Applied Materials & Interfaces, 2018, 10(34):28736-28744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14df30801a3c78981b77df93b7e7457a
[7] 胡明江, 崔秋娜, 虞婷婷, 等.基于氧化锌/聚苯胺复合材料的薄膜型甲醇传感器研究[J].分析化学, 2018, 46(8):1201-1207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201808007

HU M J, CUI Q N, YU T T, et al.. Research on film-type methanol sensor based on ZnO/polyaniline nanocomposites[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8):1201-1207.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201808007
[8] FANG X, WEI ZH P, YANG Y H, et al.. Ultraviolet electroluminescence from ZnS@ZnO core-shell nanowires/p-GaN introduced by exciton localization[J]. ACS Applied Materials & Interfaces, 2016, 8(3):1661-1666. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6144c9beed5f1a60124b2cc6fb307a1e
[9] FANG X, WANG X Y, TANG J L, et al.. Synthesis and characterization of ZnO/Ag-doped ZnO core-shell nanowires[J]. Nanoscience and Nanotechnology Letters, 2015, 7(8):643-647. doi: 10.1166/nnl.2015.1976
[10] RAI S C, WANG K, DING Y, et al.. Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-Ⅱ ZnO/ZnS core/shell nanowire array[J]. ACS Nano, 2015, 9(6):6419-6427. doi: 10.1021/acsnano.5b02081
[11] MARANA N L, LAPORTA F A, LONGO E, et al.. Theoretical study on band alignment mechanism for the ZnO/ZnS interface of core/shell structures[J]. Current Physical Chemistry, 2016, 5(4):327-336. doi: 10.2174/187794680504160308170920
[12] WANG K, CHEN J J, ZENG Z M, et al.. Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays[J]. Applied Physics Letters, 2010, 96(12):123105. doi: 10.1063/1.3367706
[13] GU X Q, ZHANG SH, ZHAO Y L, et al.. Band alignment of ZnO/ZnS heterojunction prepared through magnetron sputtering and measured by X-ray photoelectron spectroscopy[J]. Vacuum, 2015, 122:6-11. doi: 10.1016/j.vacuum.2015.09.005
[14] MYONG S Y, BAIK S J, LEE C H, et al.. Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metal/organic chemistry vapor deposition(photo-MOCVD) using AlCl3(6H2O) as new doping material[J]. Japanese Journal of Applied Physics, 1997, 36(Part 2, No.8B):L1078-L1081. doi: 10.1143/JJAP.36.L1078
[15] YAN CH L, XUE D F. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy[J]. The Journal of Physical Chemistry B, 2006, 110(51):25850-25855. doi: 10.1021/jp0659296
[16] SULIEMAN K M, HUANG X T, LIU J P, et al.. One-step growth of ZnO/ZnS core-shell nanowires by thermal evaporation[J]. Smart Materials and Structures, 2006, 16(1):89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=540822789c8b9e3f19d31339e25d1448
[17] LI R X, WEI ZH P, ZHAO F H, et al.. Investigation of localized and delocalized excitons in ZnO/ZnS core-shell heterostructured nanowires[J]. Nanophotonics, 2017, 6(5):1093-1100.
[18] LI R X, WEI ZH P, FANG X, et al.. Localized-state-dependent electroluminescence from ZnO/ZnS core shell nanowires GaN heterojunction[J]. ACS Applied Nano Materials, 2018, 1(4):1641-1647. doi: 10.1021/acsanm.8b00123
[19] FANG X, WEI ZH P, CHEN R, et al.. Influence of exciton localization on the emission and ultraviolet photoresponse of ZnO/ZnS core-shell nanowires[J]. ACS Applied Materials & Interfaces, 2015, 7(19):10331-10336. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84eac0581090bcbe41cba8d1bf03c404
[20] WANG Y B, FANG X, LI R X, et al.. Surface sulfurization of ZnO/ZnS core shell nanowires and shell layers dependent optical properties[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(9):7924-7929. doi: 10.1007/s10854-018-8792-y
[21] FANG X, LI J H, ZHAO D X, et al.. Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p-n homojunction LED fabricated by hydrothermal method[J]. The Journal of Physical Chemistry C, 2009, 113(50):21208-21212. doi: 10.1021/jp906175x
[22] DLOCZIK L, ENGELHARDT R, ERNST K, et al.. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns[J]. Applied Physics Letters, 2001, 78(23):3687-3689. doi: 10.1063/1.1376427
[23] SHUAI X M, SHEN W Z. A facile chemical conversion synthesis of ZnO/ZnS core/shell nanorods and diverse metal sulfide nanotubes[J]. The Journal of Physical Chemistry C, 2011, 115(14):6415-6422. doi: 10.1021/jp2005716
[24] TARISH S, WANG ZH J, Al-HADDAD A, et al.. Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance[J]. The Journal of Physical Chemistry C, 2015, 119(3):1575-1582. doi: 10.1021/jp510835n
[25] ZHAO X, FENG J, LIU J, et al.. Metal-organic framework-derived ZnO/ZnS heteronano structures of efficient visible-light-driven photocatalytic hydrogen production[J]. Advanced Science, 2018, 5(4):1700590. doi: 10.1002/advs.201700590
[26] 王泽岚, 周艳芬, 孟哲, 等.核壳聚苯胺选择性磁性固相萃取-高效液相色谱-质谱法测定牛奶中痕量磺胺类药物[J].分析化学, 2019, 47(1):119-128. http://d.old.wanfangdata.com.cn/Periodical/fxhx201901016

WANG Z L, ZHOU Y F, MENG ZH, et al.. Determination of trace sulfonamides antibiotics in milk using polyaniline silicon magnetic composite selective magnetic solid phase extraction combined with high performance liquid chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1):119-128.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201901016
[27] 翟英娇, 李金华, 陈新影, 等.镉掺杂氧化锌纳米花的制备及其光催化活性[J].中国光学, 2014, 7(1):124-130. http://www.chineseoptics.net.cn/CN/abstract/abstract9105.shtml

ZHAI Y J, LI J H, CHEN X Y, et al.. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity[J]. Chinese Optics, 2014, 7(1):124-130.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9105.shtml
[28] CHEN Y N, XU S J, ZHENG C C, et al.. Nature of red luminescence band in research-grade ZnO single crystals:a "self-activated" configurational transition[J]. Applied Physics Letters, 2014, 105(4):041912. doi: 10.1063/1.4892356
[29] HU Y, QIAN H H, LIU Y, et al.. A microwave-assisted rapid route to synthesize ZnO/ZnS core-shell nanostructures via controllable surface sulfidation of ZnO nanorods[J]. CrystEngComm, 2011, 13(10):3438-3443. doi: 10.1039/c1ce05111c
[30] 冯仕, 李金钗, 冯秀丽.ZnO/ZnS核-壳纳米杆的制备及其光学性质[J].武汉大学学报(理学版), 2009, 55(5):535-538. doi: 10.3321/j.issn:1671-8836.2009.05.008

FENG SH, LI J CH, FENG X L. Preparation of ZnO/ZnS core-shell nanorods and its optical properties[J]. Journal of Wuhan University of Technology(Natural Science Edition), 2009, 55(5):535-538.(in Chinese) doi: 10.3321/j.issn:1671-8836.2009.05.008