[1] VAN DEN BERG A, BERGVELD P. Labs-on-a-chip:origin, highlights and future perspectives. On the occasion of the 10th microtas conference[J]. Lab. Chip, 2006, 6(10):1266-1273. doi: 10.1039/B612120A
[2] HUANG J A, ZHANG Y L, DING H, et al.. SERS-enabled lab-on-a-chip systems[J]. Advanced Optical Materials, 2015, 3(5):618-633. doi: 10.1002/adom.v3.5
[3] CARRASCOSA L G, HUERTAS C S, LECHUGA L M. Prospects of optical biosensors for emerging label-free RNA analysis[J]. Trac-Trends in Analytical Chemistry, 2016, 80:177-189. doi: 10.1016/j.trac.2016.02.018
[4] AVELLA-OLIVER M, PUCHADES R, WACHSMANN-HOGIU S, et al.. Label-free SERS analysis of proteins and exosomes with large-scale substrates from recordable compact disks[J]. Sensors and Actuators B-Chemical, 2017, 252:657-662. doi: 10.1016/j.snb.2017.06.058
[5] ZRIMSEK A B, CHIANG N H, MATTEI M, et al.. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(11):7583-7613. doi: 10.1021/acs.chemrev.6b00552
[6] WU L, WANG Z, ZONG S, et al.. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique[J]. Analyst, 2013, 138(12):3450-3456. doi: 10.1039/c3an00181d
[7] NGUYEN A H, LEE J, CHOI H I, et al.. Fabrication of plasmon length-based surface enhanced Raman scattering for multiplex detection on microfluidic device[J]. Biosensors & Bioelectronics, 2015, 70:358-365. http://cn.bing.com/academic/profile?id=20666eca2c4ef5bed980f8d3b3d6afb8&encoded=0&v=paper_preview&mkt=zh-cn
[8] JAHN I J, ZUKOVSKAJA O, ZHENG X S, et al.. Surface-enhanced Raman spectroscopy and microfluidic platforms:challenges, solutions and potential applications[J]. Analyst, 2017, 142(7):1022-1047. doi: 10.1039/C7AN00118E
[9] ZHOU Q, KIM T. Review of microfluidic approaches for surface-enhanced Raman scattering[J]. Sensors and Actuators B-Chemical, 2016, 227:504-514. doi: 10.1016/j.snb.2015.12.069
[10] RAMAN C V, KRISHNAN K S. A new type of secondary radiation(reprinted from nature, vol 121, pp 501-502, 1928)[J]. Current Science, 1998, 74(4):381-381. http://cn.bing.com/academic/profile?id=ea37b5c9e8356c64d15f14096400404d&encoded=0&v=paper_preview&mkt=zh-cn
[11] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman-spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2):163-166. doi: 10.1016/0009-2614(74)85388-1
[12] SCHLUCKER S. Surface-enhanced Raman spectroscopy:concepts and chemical applications[J]. Angewandte Chemie International Edition, 2014, 53(19):4756-4795. doi: 10.1002/anie.201205748
[13] LE RU E C, MEYER S A, ARTUR C, et al.. Experimental demonstration of surface selection rules for SERS on flat metallic surfaces[J]. Chemical Communications(Camb), 2011, 47(13):3903-3905. http://cn.bing.com/academic/profile?id=50d04142b1d818f307452257b8e6dd7d&encoded=0&v=paper_preview&mkt=zh-cn
[14] HARMSEN S, HUANG R M, WALL M A, et al.. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J]. Science Translational Medicine, 2015, 7(271):11. http://cn.bing.com/academic/profile?id=f7ab25e34e7177676cffa8dc9a83c04b&encoded=0&v=paper_preview&mkt=zh-cn
[15] ZHOU J J, XIONG Q R, MA J L, et al.. Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles:from nanogap engineering to multifunctionality[J]. ACS Nano, 2016, 10(12):11066-11075. doi: 10.1021/acsnano.6b05951
[16] DING S Y, YI J, LI J F, et al.. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1(6):16021. doi: 10.1038/natrevmats.2016.21
[17] ZONG S, WANG Z, CHEN H, et al.. Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering[J]. Small, 2013, 9(24):4215-4220. doi: 10.1002/smll.v9.24
[18] ZONG S, WANG Z, CHEN H, et al. Assessing telomere length using surface enhanced Raman scattering[J]. Scientific Reports, 2014, 4:6977. http://cn.bing.com/academic/profile?id=6f90e468d08888346fb5b161ead21cde&encoded=0&v=paper_preview&mkt=zh-cn
[19] WANG Z, ZONG S, YANG J, et al. One-step functionalized gold nanorods as intracellular probe with improved SERS performance and reduced cytotoxicity[J]. Biosensors and Bioelectronics, 2010, 26(1):241-247. doi: 10.1016/j.bios.2010.06.032
[20] SENAPATI D, SINGH A K, RAY P C. Real time monitoring of the shape evolution of branched gold nanostructure[J]. Chemical Physics Letters, 2010, 487(1):88-91. http://cn.bing.com/academic/profile?id=faa6c15931e0aef46718e105aef8b30d&encoded=0&v=paper_preview&mkt=zh-cn
[21] REGUERA J, LANGER J, DE ABERASTURI D J, et al.. Anisotropic metal nanoparticles for surface enhanced Raman scattering[J]. Chemical Society Reviews, 2017, 46(13):3866-3885. doi: 10.1039/C7CS00158D
[22] PEI Y, WANG Z, ZONG S, et al.. Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars[J]. Journal of Materials Chemistry B, 2013, 1(32):3992. doi: 10.1039/c3tb00519d
[23] SONG C, WANG Z, ZHANG R, et al.. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate[J]. Biosensors and Bioelectronics, 2009, 25(4):826-831. doi: 10.1016/j.bios.2009.08.035
[24] LIU M, WANG Z, ZONG S, et al.. SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles[J]. Analytical and Bioanalytical Chemistry, 2013, 405(18):6131-6136. doi: 10.1007/s00216-013-7016-9
[25] WUSTHOLZ K L, HENRY A-I, MCMAHON J M, et al.. Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2010, 132(31):10903-10910. doi: 10.1021/ja104174m
[26] GELLNER M, STEINIGEWEG D, ICHILMANN S, et al.. 3d self-assembled plasmonic superstructures of gold nanospheres:synthesis and characterization at the single-particle level[J]. Small, 2011, 7(24):3445-3451. doi: 10.1002/smll.v7.24
[27] LEE S J, MORRILL A R, MOSKOVITS M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy[J]. Journal of the American Chemical Society, 2006, 128(7):2200-2201. doi: 10.1021/ja0578350
[28] CHIRUMAMILLA M, TOMA A, GOPALAKRISHNAN A, et al.. 3d nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering[J]. Advanced Materials, 2014, 26(15):2353-2358. doi: 10.1002/adma.v26.15
[29] LI J F, HUANG Y F, DING Y, et al.. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287):392-395. doi: 10.1038/nature08907
[30] WU D Y, LI J F, REN B, et al.. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chemical Society Reviews, 2008, 37(5):1025-1041. doi: 10.1039/b707872m
[31] WANG Z, ZONG S, WU L, et al.. SERS-activated platforms for immunoassay:probes, encoding methods, and applications[J]. Chemical Reviews, 2017, 117(12):7910-7963. doi: 10.1021/acs.chemrev.7b00027
[32] FENG J, XU L, CUI G, et al.. Building SERS-active heteroassemblies for ultrasensitive bisphenol a detection[J]. Biosensors and Bioelectronics, 2016, 81:138-142. doi: 10.1016/j.bios.2016.02.055
[33] LI A, TANG L, SONG D, et al.. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinb1[J]. Nanoscale, 2016, 8(4):1873-1878. doi: 10.1039/C5NR08372A
[34] SHI H, CHEN N, SU Y, et al.. Reusable silicon-based surface-enhanced Raman scattering ratiometric aptasensor with high sensitivity, specificity, and reproducibility[J]. Analytical Chemistry, 2017, 89(19):10279-10285. doi: 10.1021/acs.analchem.7b01881
[35] JIANG T, WANG X, ZHOU J, et al. Hydrothermal synthesis of Ag@mSiO2@Ag three core-shell nanoparticles and their sensitive and stable SERS properties[J]. Nanoscale, 2016, 8(9):4908-4914. doi: 10.1039/C6NR00006A
[36] FU X, CHENG Z, YU J, et al.. A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA[J]. Biosensors and Bioelectronics, 2016, 78:530-537. doi: 10.1016/j.bios.2015.11.099
[37] XU L, YAN W, MA W, et al.. SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers[J]. Advanced Materials, 2015, 27(10):1706-1711. doi: 10.1002/adma.201402244
[38] ADARSH N, RAMYA A N, MAITI K K, et al.. Unveiling nir Aza-boron-dipyrromethene(bodipy) dyes as raman probes:Surface-enhanced Raman scattering(SERS)-guided selective detection and imaging of human cancer cells[J]. Chemistry, 2017, 23(57):14286-14291. doi: 10.1002/chem.201702626
[39] ZONG S, CHEN C, WANG Z, et al. Surface enhanced Raman scattering based in situ hybridization strategy for telomere length assessment[J]. ACS Nano, 2016, 10(2):2950-2959. doi: 10.1021/acsnano.6b00198
[40] ZONG S, WANG Z, ZHANG R, et al. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads[J]. Biosensors and Bioelectronics, 2013, 41:745-751. doi: 10.1016/j.bios.2012.09.057
[41] LIU M, WANG Z, PAN L, et al.. A SERS/fluorescence dual-mode nanosensor based on the human telomeric g-quadruplex DNA:application to mercury(ii) detection[J]. Biosensors and Bioelectronics, 2015, 69:142-147. doi: 10.1016/j.bios.2015.02.009
[42] ZHANG Y, WANG Z, WU L, et al.. Rapid simultaneous detection of multi-pesticide residues on apple using sers technique[J]. Analyst, 2014, 139(20):5148-5154. doi: 10.1039/C4AN00771A
[43] ZHU D, WANG Z, ZONG S, et al.. Wavenumber-intensity joint SERS encoding using silver nanoparticles for tumor cell targeting[J]. RSC Advances, 2014, 4(105):60936-60942. doi: 10.1039/C4RA11522H
[44] LAI Y, SUN S, HE T, et al. Raman-encoded microbeads for spectral multiplexing with SERS detection[J]. RCS Advances, 2015, 5(18):13762-13767.
[45] WANG Z, ZONG S, LI W, et al.. SERS-fluorescence joint spectral encoding using organic-metal-qd hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection:putting theory into practice[J]. Journal of the American Chemical Society, 2012, 134(6):2993-3000. doi: 10.1021/ja208154m
[46] HIDI I J, JAHN M, WEBER K, et al.. Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method:toward the quantification of nitroxoline in spiked human urine samples[J]. Analytical Chemistry, 2016, 88(18):9173-9180. doi: 10.1021/acs.analchem.6b02316
[47] YAZDI S H, GILES K L, WHITE I M. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device[J]. Analytical Chemistry, 2013, 85(21):10605-10611. doi: 10.1021/ac402744z
[48] GAO R, KO J, CHA K, et al.. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor[J]. Biosensors and Bioelectronics, 2015, 72:230-236. doi: 10.1016/j.bios.2015.05.005
[49] ZHOU J, REN K, ZHAO Y, et al.. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules[J]. Analytical and Bioanalytical Chemistry, 2012, 402(4):1601-1609. doi: 10.1007/s00216-011-5585-z
[50] HWANG H, HAN D, OH Y J, et al.. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic sers platform[J]. Lab. Chip, 2011, 11(15):2518-2525. doi: 10.1039/c1lc20277d
[51] OH Y J, JEONG K H. Optofluidic SERS chip with plasmonic nanoprobes self-aligned along microfluidic channels[J]. Lab. Chip, 2014, 14(5):865-868. doi: 10.1039/c3lc51257f
[52] MAO H, WU W, SHE D, et al.. Microfluidic surface-enhanced Raman scattering sensors based on nanopillar forests realized by an oxygen-plasma-stripping-of-photoresist technique[J]. Small, 2014, 10(1):127-134. doi: 10.1002/smll.201300036
[53] XU B B, ZHANG R, LIU X Q, et al.. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chemical Communications(Camb), 2012, 48(11):1680-1682. http://cn.bing.com/academic/profile?id=67551b96b57c845ba3b0d8218c2ce081&encoded=0&v=paper_preview&mkt=zh-cn
[54] YAN W, YANG L, CHEN J, et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Advanced Materials, 2017, 29(36) http://cn.bing.com/academic/profile?id=6b3ab9c8aab2216f675e87fb2f7bf4b2&encoded=0&v=paper_preview&mkt=zh-cn
[55] MUEHLIG A, BOCKLITZ T, LABUGGER I, et al.. Loc-sers:A promising closed system for the identification of mycobacteria[J]. Analytical Chemistry, 2016, 88(16):7998-8004. doi: 10.1021/acs.analchem.6b01152
[56] HIDI I J, JAHN M, PLETZ M W, et al.. Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique[J]. Journal of Physical Chemistry C, 2016, 120(37):20613-20623. doi: 10.1021/acs.jpcc.6b01005
[57] ZOU K, GAO Z, DENG Q, et al.. Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy[J]. Electrophoresis, 2016, 37(5-6):786-789. doi: 10.1002/elps.v37.5-6
[58] NOVARA C, CHIADO A, PACCOTTI N, et al.. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA[J]. Faraday Discuss, 2017, http://cn.bing.com/academic/profile?id=6bc20d9352b3600a5ccc153d945bc176&encoded=0&v=paper_preview&mkt=zh-cn
[59] GAO R, CHENG Z, DEMELLO A J, et al.. Wash-free magnetic immunoassay of the psa cancer marker using SERS and droplet microfluidics[J]. Lab. Chip, 2016, 16(6):1022-1029. doi: 10.1039/C5LC01249J
[60] PALLAORO A, HOONEJANI M R, BRAUN G B, et al.. Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel[J]. ACS Nano, 2015, 9(4):4328-4336. doi: 10.1021/acsnano.5b00750
[61] WU L, WANG Z, ZHANG Y, et al.. In situ probing of cell-cell communications with surface-enhanced Raman scattering(SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs[J]. Nano Research, 2016, 10(2):584-594. http://cn.bing.com/academic/profile?id=3d7d4e8fdc43201e7e1b444d52bbac4c&encoded=0&v=paper_preview&mkt=zh-cn
[62] WU L, WANG Z, FAN K, et al.. A SERS-assisted 3d barcode chip for high-throughput biosensing[J]. Small, 2015, 11(23):2798-2806. doi: 10.1002/smll.201403474
[63] PATZE S, HUEBNER U, LIEBOLD F, et al.. SERS as an analytical tool in environmental science:the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup[J]. Analytica Chimica Acta, 2017, 949:1-7. doi: 10.1016/j.aca.2016.10.009
[64] QI N, LI B, YOU H, et al.. Surface-enhanced Raman scattering on a zigzag microfluidic chip:towards high-sensitivity detection of As(Ⅲ) ions[J]. Analytical Methods, 2014, 6(12):4077-4082. doi: 10.1039/C3AY42283F
[65] WU L, WANG Z, ZONG S, et al.. Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip[J]. Biosensors and Bioelectronics, 2014, 62:13-18. doi: 10.1016/j.bios.2014.06.026
[66] CHOI J, LEE K S, JUNG J H, et al.. Integrated real-time optofluidic SERS via a liquid-core/liquid-cladding waveguide[J]. RSC Advances, 2015, 5(2):922-927. doi: 10.1039/C4RA11027G
[67] YAZDI S H, WHITE I M. Optofluidic surface enhanced Raman spectroscopy microsystem forsensitive and repeatable on-site detection of chemical contaminants[J]. Analytical Chemistry, 2012, 84(18):7992-7998. doi: 10.1021/ac301747b
[68] HAN Z, LIU H, MENG J, et al.. Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy[J]. Analytical Chemistry, 2015, 87(18):9500-9506. doi: 10.1021/acs.analchem.5b02899
[69] KIM A, BARCELO S J, WILLIAMS R S, et al.. Melamine sensing in milk products by using surface enhanced Raman scattering[J]. Analytical Chemistry, 2012, 84(21):9303-9309. doi: 10.1021/ac302025q
[70] VILLA J E L, POPPI R J. Aportable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution[J]. Analyst, 2016, 141(6):1966-1972. doi: 10.1039/C5AN02398J