[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669. doi: 10.1126/science.1102896
[2] SINGH V, JOUNG D, ZHAI L, et al.. Graphene based materials:Past, present and future[J]. Prog. Mater. Sci., 2011, 56(8):1178-1271. doi: 10.1016/j.pmatsci.2011.03.003
[3] XU Y, SHI G, DUAN X. Self-assembled three-dimensional graphene macrostructures:synthesis and applications in supercapacitors[J]. Accounts Chem. Res., 2015, 48(6):1666-1675. doi: 10.1021/acs.accounts.5b00117
[4] LIU M, ZHANG R, CHEN W. Graphene-supported nanoelectrocatalysts for fuel cells:synthesis, properties, and applications[J]. Chem. Rev., 2014, 114(10):5117-5160. doi: 10.1021/cr400523y
[5] BONACCORSO F, SUN Z, HASAN T, et al.. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4(9):611-622. doi: 10.1038/nphoton.2010.186
[6] 李正顺, 王岩, 王雷.Fe3+对石墨烯氧化物荧光淬灭机理的研究[J].中国光学, 2016, 9(5):569-578. http://www.chineseoptics.net.cn/CN/abstract/abstract9449.shtml

LI ZH SH, WANG Y, WANG L. Fluorescence quenching mechanism of graphene oxide by Fe3+[J]. Chinese Optic, 2016, 9(5):569-578.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9449.shtml
[7] 万吉祥, 陈小源, 王聪.荧光石墨烯量子点的制备及其荧光机理分析[J].功能材料, 2017, 48(8):8024-8031. http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm

WAN J X, CHEN X Y, WANG C. Synthesis and photoluminescence mechanism of graphene quantum dots[J]. Journal of Functional Materials, 2017, 48(8):8024-8031.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10280-1014008049.htm
[8] 俞文英, 余陈欢, 方杰, 等.氧化石墨烯纳米载体的生物相容性研究进展[J].中国现代应用药学, 2017, 34(5):777-782. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm

YU W Y, YU C H, FANG J, et al.. Research progress on biocompatibility of graphene oxide as a nanocarrier[J]. Chinese Journal of Modern Applied Pharmacy, 2017, 34(5):777-782.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-KXTB201420004.htm
[9] 禚洪梅.尺寸均一的氧化石墨烯制备综述[J].轻工科技, 2017, 33(3):39-40+44. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm

GAO H M. Preparation of graphene oxide with uniform size[J]. Light Industry Science and Technology, 2017, 33(3):39-40+44.(in Chinese) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GNCL201010003059.htm
[10] 李绍娟, 甘胜, 沐浩然.石墨烯光电子器件的应用研究进展[J].新型炭材料, 2014, 29(5):329-356. http://mall.cnki.net/magazine/Article/XTCL201405001.htm

LI SH J, GAN SH, MU H R. Research progress in graphene use in photonic and optoelectronic devices[J]. New Carbon Materials, 2014, 29(5):329-356.(in Chinese) http://mall.cnki.net/magazine/Article/XTCL201405001.htm
[11] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al.. Graphene-based composite materials[J]. Nature, 2006, 442(7100):282-286. doi: 10.1038/nature04969
[12] KIM J, COTE L J, HUANG J X. Two dimensional soft material:new faces of graphene oxide[J]. Accounts Chem. Res., 2012, 45(8):1356-1364. doi: 10.1021/ar300047s
[13] 邓尧, 黄肖容, 邬晓龄.氧化石墨烯复合材料的研究进展[J].材料导报, 2012, 26(15):84-87. doi: 10.3969/j.issn.1005-023X.2012.15.016

DENG Y, HUANG X R, WU X L. Review on graphene oxide composites[J]. Materials Review, 2012, 26(15):84-87.(in Chinese) doi: 10.3969/j.issn.1005-023X.2012.15.016
[14] LI D, MULLER M B, GILJE S, et al.. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol, 2008, 3(2):101-105. doi: 10.1038/nnano.2007.451
[15] LU C H, YANG H H, ZHU C L, et al.. A Graphene platform for sensing biomolecules[J]. Angew Chem. Int. Edit., 2009, 48(26):4785-4787. doi: 10.1002/anie.v48:26
[16] SWATHI R S, SEBASTIAN K L. Resonance energy transfer from a dye molecule to graphene[J]. Journal of Chemical Physics, 2008, 129(5):. http://cn.bing.com/academic/profile?id=cef32be6e31e0ceda6edab3ee31b6140&encoded=0&v=paper_preview&mkt=zh-cn
[17] SWATHI R S, SEBASTIAN K L. Long range resonance energy transfer from a dye molecule to graphene has (distance)(-4) dependence[J]. The Journal of Chemical Physics, 2009, 130(8):086101. doi: 10.1063/1.3077292
[18] PEI H, LI J, LV M, et al.. A Graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers[J]. J. Am. Chem. Soc., 2012, 134(33):13843-13849. doi: 10.1021/ja305814u
[19] DONG H F, GAO W C, YAN F, et al.. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Anal. Chem., 2010, 82(13):5511-5517. doi: 10.1021/ac100852z
[20] ZHANG C L, YUAN Y X, ZHANG S M, et al.. Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide[J]. Angew Chem. Int. Edit., 2011, 50(30):6851-6854. doi: 10.1002/anie.201100769
[21] LIU X Q, WANG F, AIZEN R, et al.. Graphene oxide/nucleic-acid-stabilized silver nanoclusters:functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs[J]. J. Am. Chem. Soc., 2013, 135(32):11832-11839. doi: 10.1021/ja403485r
[22] BALAPANURU J, YANG J X, XIAO S, et al.. A Graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties[J]. Angew Chem. Int. Edit., 2010, 49(37):6549-6553. doi: 10.1002/anie.201001004
[23] WEN Y, PENG C, LI D, et al.. Metal ion-modulated graphene-DNAzyme interactions:design of a nanoprobe for fluorescent detection of lead(Ⅱ) ions with high sensitivity, selectivity and tunable dynamic range[J]. Chem. Commun.(Camb), 2011, 47(22):6278-6280. doi: 10.1039/c1cc11486g
[24] LIU J, WANG C, JIANG Y, et al.. Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules[J]. Anal. Chem., 2013, 85(3):1424-1430. doi: 10.1021/ac3023982
[25] JANG H, RYOO S R, KIM Y K, et al.. Discovery of HepatitisC Virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide[J]. Angew Chem. Int. Edit., 2013, 52(8):2340-2344. doi: 10.1002/anie.201209222
[26] LIU B W, SUN Z Y, ZHANG X, et al.. Mechanisms of DNA sensing on graphene oxide[J]. Anal. Chem., 2013, 85(16):7987-7993. doi: 10.1021/ac401845p
[27] CAO L, MEZIANI M J, SAHU S, et al.. Photoluminescence properties of graphene versus other carbon nanomaterials[J]. Accounts Chem. Res., 2013, 46(1):171-180. doi: 10.1021/ar300128j
[28] HUANG H M, LI Z B, SHE J C, et al.. Oxygen density dependent band gap of reduced graphene oxide[J]. J. Appl. Phys., 2012, 111(5):. http://cn.bing.com/academic/profile?id=e208eb95478337777ad74170e72e707a&encoded=0&v=paper_preview&mkt=zh-cn
[29] PAL S K. Versatile photoluminescence from graphene and its derivatives[J]. Carbon, 2015, 88:86-112. doi: 10.1016/j.carbon.2015.02.035
[30] HONG G S, LEE J C, ROBINSON J T, et al.. Multifunctional in vivo vascular imaging using near-infrared Ⅱ fluorescence[J]. Nat. Med., 2012, 18(12):1841-1846. doi: 10.1038/nm.2995
[31] SUN X M, LIU Z, WELSHER K, et al.. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Res., 2008, 1(3):203-212. doi: 10.1007/s12274-008-8021-8
[32] ZHANG M F, OKAZAKI T, ⅡZUMI Y, et al.. Preparation of small-sized graphene oxide sheets and their biological applications[J]. J. Mater Chem. B, 2016, 4(1):121-127. doi: 10.1039/C5TB01800E
[33] LUO Z T, VORA P M, MELE E J, et al.. Photoluminescence and band gap modulation in graphene oxide[J]. Appl. Phys. Lett., 2009, 94(11). http://cn.bing.com/academic/profile?id=c099499526b3e0d32b66ea6a9b8ff85e&encoded=0&v=paper_preview&mkt=zh-cn
[34] CHEN J L, YAN X P. Ionic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH[J]. Chem. Commun., 2011, 47(11):3135-3137. doi: 10.1039/c0cc03999c
[35] SHANG J Z, MA L, LI J W, et al.. The origin of fluorescence from graphene oxide[J]. Sci. Rep-Uk, 2012, 2. http://cn.bing.com/academic/profile?id=489add63d5b90c3eaecf56cdf17c8226&encoded=0&v=paper_preview&mkt=zh-cn
[36] GOKUS T, NAIR R R, BONETTI A, et al.. Making graphene luminescent by oxygen plasma treatment[J]. ACS Nano, 2009, 3(12):3963-3968. doi: 10.1021/nn9012753
[37] MEI Q S, ZHANG K, GUAN G J, et al.. Highly efficient photoluminescent graphene oxide with tunable surface properties[J]. Chem. Commun., 2010, 46(39):7319-7321. doi: 10.1039/c0cc02374d
[38] ZHANG K, YANG L, ZHU H J, et al.. Selective visual detection of trace trinitrotoluene residues based on dual-color fluorescence of graphene oxide-nanocrystals hybrid probe[J]. Analyst, 2014, 139(10):2379-2385. doi: 10.1039/C3AN02380J
[39] MEI Q S, JIANG C L, GUAN G J, et al.. Fluorescent graphene oxide logic gates for discrimination of iron(3+) and iron(2+) in living cells by imaging[J]. Chem. Commun., 2012, 48(60):7468-7470. doi: 10.1039/c2cc31992f
[40] CHIEN C T, LI S S, LAI W J, et al.. Tunable photoluminescence from graphene oxide[J]. Angew Chem. Int. Edit., 2012, 51(27):6662-6666. doi: 10.1002/anie.201200474
[41] EXARHOS A L, TURK M E, KIKKAWA J M. Ultrafast spectral migration of photoluminescence in graphene oxide[J]. Nano Lett., 2013, 13(2):344-349. doi: 10.1021/nl302624p
[42] MCDONALD M P, ELTOM A, VIETMEYER F, et al.. Direct observation of spatially heterogeneous single-layer graphene oxide reduction kinetics[J]. Nano Lett., 2013, 13(12):5777-5784. doi: 10.1021/nl402057j
[43] EDA G, LIN Y Y, MATTEVI C, et al.. Blue photoluminescence from chemically derived graphene oxide[J]. Adv. Mater., 2010, 22(4):505. doi: 10.1002/adma.v22:4
[44] GALANDE C, MOHITE A D, NAUMOV A V, et al.. Quasi-molecular fluorescence from graphene oxide[J]. Sci. Rep-Uk, 2011, 1. http://cn.bing.com/academic/profile?id=e68de853c142a648f7bc195b6e7aee69&encoded=0&v=paper_preview&mkt=zh-cn
[45] CUSHING S K, LI M, HUANG F Q, et al.. Origin of strong excitation wavelength dependent fluorescence of graphene oxide[J]. ACS Nano., 2014, 8(1):1002-1013. doi: 10.1021/nn405843d
[46] THOMAS H R, VALLES C, YOUNG R J, et al.. Identifying the fluorescence of graphene oxide[J]. J. Mater. Chem. C, 2013, 1(2):338-342. doi: 10.1039/C2TC00234E
[47] ROURKE J P, PANDEY P A, MOORE J J, et al.. The real graphene oxide revealed:stripping the oxidative debris from the graphene-like sheets[J]. Angew. Chem. Int. Ed., 2011, 50(14):3173-3177. doi: 10.1002/anie.201007520
[48] NAUMOV A, GROTE F, OVERGAARD M, et al.. Graphene oxide:a one-versus two-component material[J]. J. Am. Chem. Soc., 2016, 138(36):11445-11448. doi: 10.1021/jacs.6b05928
[49] TSUCHIYA T, TERABE K, AONO M. In situ and non-volatile bandgap tuning of multilayer graphene oxide in an all-solid-state electric double-layer transistor[J]. Adv. Mater., 2014, 26(7):1087-1091. doi: 10.1002/adma.201304770
[50] TSUCHIYA T, TSURUOKA T, TERABE K, et al.. In situ and nonvolatile photoluminescence tuning and nanodomain writing demonstrated by all-solid-state devices based on graphene oxide[J]. ACS Nano., 2015, 9(2):2102-2110. doi: 10.1021/nn507363g
[51] CHIEN C T, LI S S, LAI W J, et al.. Tunable photoluminescence from graphene oxide[J]. Angew Chem. Int. Edit., 2012, 51(27):6662-6666. doi: 10.1002/anie.201200474
[52] MAITI R, MIDYA A, NARAYANA C, et al.. Tunable optical properties of graphene oxide by tailoring the oxygen functionalities using infrared irradiation[J]. Nanotechnology, 2014, 25(49):704. http://cn.bing.com/academic/profile?id=800c8ffe5d6603e977c6bc6183b7f5d3&encoded=0&v=paper_preview&mkt=zh-cn
[53] MEI Q S, CHEN J, ZHAO J, et al.. Atomic oxygen tailored graphene oxide nanosheets emissions for multicolor cellular imaging[J]. ACS Appl. Mater Inter., 2016, 8(11):7390-7395. doi: 10.1021/acsami.6b00791
[54] GAN Z X, XIONG S J, WU X L, et al.. Mn2+-bonded reduced graphene oxide with strong radiative recombination in broad visible range caused by resonant energy transfer[J]. Nano Lett., 2011, 11(9):3951-3956. doi: 10.1021/nl202240s
[55] PENG C, HU W B, ZHOU Y T, et al.. Intracellular imaging with a graphene-based fluorescent probe[J]. Small, 2010, 6(15):1686-1692. doi: 10.1002/smll.v6:15
[56] FARROW B, KAMAT P V. CdSe quantum dot sensitized solar cells. shuttling electrons through stacked carbon nanocups[J]. J. Am. Chem. Soc., 2009, 131(31):11124-11131. doi: 10.1021/ja903337c
[57] LI L L, LIU K P, YANG G H, et al.. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing[J]. Adv. Funct. Mater., 2011, 21(5):869-878. doi: 10.1002/adfm.201001550
[58] HU S H, CHEN Y W, HUNG W T, et al.. Quantum-dot-tagged reduced graphene oxide nanocomposites for bright fluorescence bioimaging and photothermal therapy monitored in situ[J]. Adv. Mater., 2012, 24(13):1748-1754. doi: 10.1002/adma.201104070
[59] PAN D Y, ZHANG J C, LI Z, et al.. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv. Mater., 2010, 22(6):734-738. doi: 10.1002/adma.v22:6
[60] KIM S, HWANG S W, KIM M K, et al.. Anomalous behaviors of visible luminescence from graphene quantum dots:interplay between size and shape[J]. ACS Nano., 2012, 6(9):8203-8208. doi: 10.1021/nn302878r
[61] SUN H J, WU L, GAO N, et al.. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application[J]. ACS Appl. Mater Inter., 2013, 5(3):1174-1179. doi: 10.1021/am3030849
[62] TETSUKA H, ASAHI R, NAGOYA A, et al.. Optically tunable amino-functionalized graphene quantum dots[J]. Adv. Mater., 2012, 24(39):5333-5338. doi: 10.1002/adma.201201930
[63] JIN S H, KIM D H, JUN G H, et al.. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups[J]. ACS Nano., 2013, 7(2):1239-1245. doi: 10.1021/nn304675g
[64] LINGAM K, PODILA R, QIAN H J, et al.. Evidence for edge-state photoluminescence in graphene quantum dots[J]. Adv. Funct. Mater., 2013, 23(40):5062-5065. doi: 10.1002/adfm.v23.40
[65] ZHOU X J, ZHANG Y, WANG C, et al.. Photo-fenton reaction of graphene oxide:a new strategy to prepare graphene quantum dots for DNA cleavage[J]. ACS Nano., 2012, 6(8):6592-6599. doi: 10.1021/nn301629v
[66] PENG J, GAO W, GUPTA B K, et al.. Graphene quantum dots derived from carbon fibers[J]. Nano Lett., 2012, 12(2):844-849. doi: 10.1021/nl2038979
[67] YE R Q, XIANG C S, LIN J, PENG Z W, et al.. Coal as an abundant source of graphene quantum dots[J]. Nat. Commun., 2013, 4. http://cn.bing.com/academic/profile?id=0dc967d711ad69a64d268f96b2ee742a&encoded=0&v=paper_preview&mkt=zh-cn
[68] YE R Q, PENG Z W, METZGER A, et al.. Bandgap engineering of coal-derived graphene quantum dots[J]. ACS Appl. Mater. Inter., 2015, 7(12):7041-7048. doi: 10.1021/acsami.5b01419
[69] LI Y, HU Y, ZHAO Y, et al.. An Electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011, 23(6):776-780. doi: 10.1002/adma.201003819
[70] LIU F, JANG M H, HA H D, et al.. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots:origin of blue and green luminescence[J]. Adv. Mater., 2013, 25(27):3657-3662. doi: 10.1002/adma.v25.27
[71] YOON H, CHANG Y H, SONG S H, et al.. Intrinsic photoluminescence emission from subdomained graphene quantum dots[J]. Adv. Mater., 2016, 28(26):5255-5261. doi: 10.1002/adma.201600616
[72] SHEN J H, ZHU Y H, CHEN C, et al.. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chem. Commun., 2011, 47(9):2580-2582. doi: 10.1039/C0CC04812G
[73] ZHU S J, ZHANG J H, TANG S J, et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:from fluorescence mechanism to up-conversion bioimaging applications[J]. Adv. Funct. Mater., 2012, 22(22):4732-4740. doi: 10.1002/adfm.v22.22
[74] TAN D Z, ZHOU S F, QIU J R. Comment on "upconversion and downconversion fluorescent graphene quantum dots:ultrasonic preparation and photocatalysis"[J]. ACS Nano, 2012, 6(8):6530-6531. doi: 10.1021/nn3016822
[75] GAN Z X, WU X L, ZHOU G X, et al.. Is there real upconversion photoluminescence from graphene quantum dots[J]. Adv. Opt. Mater, 2013, 1(8):554-558. doi: 10.1002/adom.v1.8
[76] LI J L, BAO H C, HOU X L, et al.. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angew Chem. Int. Edit., 2012, 51(8):1830-1834. doi: 10.1002/anie.v51.8
[77] QIAN J, WANG D, CAI F H, et al.. Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging[J]. Angew Chem. Int. Edit., 2012, 51(42):10570-10575. doi: 10.1002/anie.201206107
[78] LIU Q, GUO B D, RAO Z Y, et al.. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Lett., 2013, 13(6):2436-2441. doi: 10.1021/nl400368v
[79] NAHAIN A A, LEE E J, JEONG H J. Photoresponsive fluorescent reduced graphene oxide by spiropyran conjugated hyaluronic acid for in vivo imaging and target delivery[J]. Biomacromolecules, 2013, 14:4082. doi: 10.1021/bm4012166
[80] NAHAIN A A, LEE J E, IN I. Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots[J]. Mol. Pharmaceutics, 2013, 10:3736. doi: 10.1021/mp400219u
[81] GE J, LAN M, ZHOU B. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation[J]. Nat. Commun., 2014, 5:4596. doi: 10.1038/ncomms5596
[82] ZHENG T X, THAN A, ANANTHANARAYA A. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes[J]. ACS Nano, 2013, 7:6278. doi: 10.1021/nn4023137