[1] CUI T J, SMITH D R, LIU R. Metamaterials:Theory, Design, and Applications[M]. New York:Springer Science & Business Media, 2009.
[2] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10:509-514. doi: 10.1070/PU1968v010n04ABEH003699
[3] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292:77-79. doi: 10.1126/science.1058847
[4] PENDRY J B. Negative refraction makes a perfect lens[J]. Physics Review Letter, 2000, 85:3966-3969. doi: 10.1103/PhysRevLett.85.3966
[5] ENOCH S, TAYEB G, SABOUROUX P, et al.. A metamaterial for directive emission[J]. Physics Review Letter, 2002, 89:213902. doi: 10.1103/PhysRevLett.89.213902
[6] SILVEIRINHA M, ENGHETA N. Tunneling of Electromagnetic energy through subwavelength channels and bends using-near-zero materials[J]. Physics Review Letter, 2006, 97:157403. doi: 10.1103/PhysRevLett.97.157403
[7] LIU R, CHENG Q, HAND T, et al.. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies[J]. Physics Review Letter, 2008, 100:023903. doi: 10.1103/PhysRevLett.100.023903
[8] ZHANG B, LUO Y, LIU X, et al.. Macroscopic invisibility cloak for visible light[J]. Physics Review Letter, 2011; 106:033901. doi: 10.1103/PhysRevLett.106.033901
[9] CHEN X, LUO Y, ZHANG J, et al.. Macroscopic invisibility cloaking of visible light[J]. Nature Communication, 2011, 2:176. doi: 10.1038/ncomms1176
[10] CHENG Q, JIANG W X, CUI T J. Spatial power combination for omnidirectional radiation via anisotropic metamaterials[J]. Physics Review Letter, 2012, 108:213903. doi: 10.1103/PhysRevLett.108.213903
[11] BLANCO A, CHOMSKI E, GRABTCHAK S, et al.. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405:437-440. doi: 10.1038/35013024
[12] SAKODA K. Optical Properties of Photonic Crystals[M]. New York:Springer Science & Business Media, 2005.
[13] PENDRY J B, SCHURIG D, SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312:1780-1782. doi: 10.1126/science.1125907
[14] LEONHARDT U. Optical conformal mapping[J]. Science, 2006, 312:1777-1780. doi: 10.1126/science.1126493
[15] SCHURIG D, MOCK J J, JUSTICE B J, et al.. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314:977-980. doi: 10.1126/science.1133628
[16] LI J, PENDRY J B. Hiding under the carpet:a new strategy for cloaking[J]. Physics Review Letter, 2008, 101:203901. doi: 10.1103/PhysRevLett.101.203901
[17] LIU R, JI C, MOCK J J, et al.. Broadband ground-plane cloak[J]. Science, 2009, 323:366-369. doi: 10.1126/science.1166949
[18] ERGIN T, STENGER N, BRENNER P, et al.. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328:337-339. doi: 10.1126/science.1186351
[19] MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
[20] JIANG W X, CUI T J, CHENG Q, et al.. Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces[J]. Applied Physics Letter, 2008, 92:264101. doi: 10.1063/1.2951485
[21] LAI Y, NG J, CHEN H, et al.. Illusion optics:the optical transformation of an object into another object[J]. Physics Review Letter, 2009, 102:253902. doi: 10.1103/PhysRevLett.102.253902
[22] JIANG W X, CUI T J, YANG X M, et al.. Shrinking an arbitrary object as one desires using metamaterials[J]. Applied Physics Letter, 2011, 98:204101. doi: 10.1063/1.3590203
[23] KUNDTZ N, SMITH D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9:129132.
[24] MA H F, CUI T J. Three-dimensional broadband ground-plane cloakmade of metamaterials[J]. Nature Communication, 2010, 1:21.
[25] SMITH D R, MOCK J J, STARR A F, et al.. Gradient index metamaterials[J]. Physics Review E, 2005, 71:036609. doi: 10.1103/PhysRevE.71.036609
[26] HAO Y, MITTRA R. FDTD Modeling of Metamaterials:Theory and Applications[M]. Boston:Artech House, 2009.
[27] CHEN X, M A HF, ZOU X Y, et al.. Three-dimensional broadband and highdirectivity lens antenna made of metamaterials[J]. J. Applied Physics, 2011, 110:044904. doi: 10.1063/1.3622596
[28] LIER E, WERNER D H, SCARBOROUGH C P, et al.. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10:216-222. doi: 10.1038/nmat2950
[29] JIANG W X, QIU C W, HAN T C, et al.. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25:6963-6968. doi: 10.1002/adma.v25.48
[30] YANG X M, ZHOU X Y, CHENG Q, et al.. Diffuse reflections by randomly gradient index metamaterials[J]. Optics Letter, 2010, 35:808-810. doi: 10.1364/OL.35.000808
[31] SILVA A, MONTICONE F, CASTALDI G, et al.. Performing mathematical operations with metamaterials[J]. Science, 2014, 343:160-163. doi: 10.1126/science.1242818
[32] YU N, GENEVET P, KATS M A, et al.. Light propagation with phasediscontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334:333-337. doi: 10.1126/science.1210713
[33] NI X, EMANI N K, KILDISHEV A V, et al.. Broadband light bending with plasmonicnanoantennas[J]. Science, 2012, 335:427. doi: 10.1126/science.1214686
[34] SUN S, HE Q, XIAO S, et al.. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11:426-431. doi: 10.1038/nmat3292
[35] YIN X, YE Z, RHO J, et al.. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339:1405-1407. doi: 10.1126/science.1231758
[36] LIN J, MUELLER J P, WANG Q, et al.. Polarization-controlled tunable directional coupling of surface plasmonpolaritons[J]. Science, 2013, 340:331-334. doi: 10.1126/science.1233746
[37] MIROSHNICHENKO A E, KIVSHAR Y S. Polarization traffic control for surface plasmons[J]. Science, 2013, 340:283-284. doi: 10.1126/science.1236154
[38] GRADY N K, HEYES J E, CHOWDHURY D R, et al.. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340:1304-1307. doi: 10.1126/science.1235399
[39] QU C, MA S J, HAO J M, et al.. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23):235503. doi: 10.1103/PhysRevLett.115.235503
[40] CUI T J, QI M Q, WAN X, et al.. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Application, 2014, 3:e218.
[41] ZHU B O, ZHAO J M, FENG Y J. Active impedance metasurface with full 360 reflection phase tuning[J]. Scientific Reports, 2013, 3:3059.
[42] MIAO Z, WU Q, LI X, et al.. Widely tunable terahertz phase modulation with gate-controlled graphenemetasurfaces[J]. Physical Review X, 2015, 5(4):041027. doi: 10.1103/PhysRevX.5.041027
[43] WAN X, QI M Q, CHEN T Y, et al.. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 2016, 6:20663. doi: 10.1038/srep20663
[44] XU H X, SUN S, TANG S, et al.. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6:27503. doi: 10.1038/srep27503
[45] GIOVAMPAOLA C D, ENGHETA N. Digital metamaterials[J]. Nature Materials, 2014, 14:1115-1121.
[46] GAO L H, CHENG Q, YANG J, et al.. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science & Application, 2015, 4:e324.
[47] LIU S, CUI T J, XU Q, et al.. Anisotropic coding metamaterials and their powerful manipulation to differently polarized terahertz waves[J]. Light:Science & Application, 2015, 5:e16076.
[48] PAQUAY M, IRIARTE JC, EDERRA I, et al.. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55:3630-3638. doi: 10.1109/TAP.2007.910306
[49] MAIT J N. Design of binary-phase and multiphase Fourier gratings for array generation[J]. J. Optical Society of America A, 1990, 7:1514-1528. doi: 10.1364/JOSAA.7.001514
[50] WANG M R, SU H. Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication[J]. Applied Optics, 1998, 37:7568-7576. doi: 10.1364/AO.37.007568
[51] COOMBER S D, CAMERON C D, HUGHES J R, et al.. Optically addressed spatial light modulators for replaying computer-generated holograms[J]. Proc SPIE, 2001, 4457:9-19. doi: 10.1117/12.447756
[52] WATTS C M, SHREKENHAMER D, MONTOYA J, et al.. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8):605-609. doi: 10.1038/nphoton.2014.139
[53] SHREKENHAMER D, MONTOYA J, KRISHNA S, et al.. Four-color metamaterial absorber THz spatial light modulator[J]. Advanced Optical Materials, 2013, 1(12):905-909. doi: 10.1002/adom.v1.12
[54] SAVO S, SHREKENHAMER D, PADILLA W J. Liquid crystal metamaterial absorber spatial light modulator for THz applications[J]. Advanced Optical Materials, 2014, 2:275-279. doi: 10.1002/adom.v2.3
[55] CHAN W L, CHEN H T, TAYLOR A J, et al.. A spatial light modulator for terahertz beams[J]. Applied Physics Letter, 2009, 94:213511. doi: 10.1063/1.3147221
[56] KARL N, REICHEL K, CHEN H T, et al.. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range[J]. Applied Physics Letter, 2014, 104:091115. doi: 10.1063/1.4867276
[57] MAXFIELD C. The Design Warrior's Guide to FPGAs:Devices, Tools and Flows[M]. Oxford:Elsevier, 2004.
[58] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber[J]. Physics Review Letter, 2008, 100:207402. doi: 10.1103/PhysRevLett.100.207402
[59] CHEN H T, ZHOU J, O'HARA J F, et al.. Antireflection coating using metamaterials and identification of its mechanism[J]. Physics Review Letter, 2010, 105:073901. doi: 10.1103/PhysRevLett.105.073901