[1] 李小强.激光辅助放电Sn等离子体13.5 nm极紫外辐射研究[D].哈尔滨: 哈尔滨工业大学, 2014.

LI X Q. Research of 13.5 nm extreme ultraviolet radiation from tin plasma produced by laser-assisted discharge[D]. Harbin: Harbin Institute of Technology, 2014. (in Chinese)
[2] HUTCHESON G D. Moore's law, lithography, and how optics drive the semiconductor industry[J]. Proceedings of SPIE, 2018, 10583: 1058303. doi: 10.1117/12.210341.full
[3] PIRATI A, VAN SHOOT J, TROOST K, et al. The future of EUV lithography: enabling Moore's law in the next decade[J]. Proceedings of SPIE, 2017, 10143: 101430G. http://cn.bing.com/academic/profile?id=4c04f740f379fcbd6ae165c8ce6fa31f&encoded=0&v=paper_preview&mkt=zh-cn
[4] DAVID A. Soft X-Rays and EUV Radiation[M]. Cambridge: Cambridge University Press, 2007: 17-20.
[5] 楼祺洪, 袁志军, 张海波.光刻技术的历史与现状[J].科学, 2017, 69(3): 32-36. http://d.old.wanfangdata.com.cn/Periodical/kx201703008

LOU Q H, YUAN ZH J, ZHANG H B. The history and present situation of lithography technology[J]. Science, 2017, 69(3): 32-36. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kx201703008
[6] LEVINSON H J. Principles of Lithography[M]. 3rd ed. Washington: SPIE Press, 2011: 47-50.
[7] 万南. ASML出货新光刻机NXT2000i: 用于7nm/5nm DUV工艺[EB/OL]. (2018-08-03)[2019-02-02]. http://news.mydrivers.com/1/589/589237.htm.

WAN N. ASML ships new lithography machine NXT2000i: for 7nm/5nm DUV process[EB/OL]. (2018-08-03)[2019-02-02]. http://news.mydrivers.com/1/589/589237.htm. (in Chinese)
[8] 耿永友, 邓常猛, 吴谊群.极紫外光刻材料研究进展[J].红外与激光工程, 2014, 43(6): 1850-1856. doi: 10.3969/j.issn.1007-2276.2014.06.027

GENG Y Y, DENG CH M, WU Y Q. Recent progress of extreme ultraviolet resists[J]. Infrared and Laser Engineering, 2014, 43(6): 1850-1856. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.06.027
[9] 窦银萍, 孙长凯, 林景全.激光等离子体极紫外光刻光源[J].中国光学, 2013, 6(1): 20-33. http://www.chineseoptics.net.cn/CN/abstract/abstract8894.shtml

DOU Y P, SUN CH K, LIN J Q. Laser-produced plasma light source for extreme ultraviolet lithography[J]. Chinese Optics, 2013, 6(1): 20-33. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8894.shtml
[10] 张福昌, 李艳秋. EUV光刻中激光等离子体光源的发展[J].微细加工技术, 2006(5): 1-7, 12. http://d.old.wanfangdata.com.cn/Periodical/wxjgjs200605001

ZHANG F CH, LI Y Q. Development of laser produced plasma source for EUV lithography[J]. Microfabrication Technology, 2006(5): 1-7, 12. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wxjgjs200605001
[11] TICHENOR D A, RAY-CHAUDHURI A K, REPLOGLE W C, et al. System integration and performance of the EUV engineering test stand[J]. Proceedings of SPIE, 2001, 4343: 19-37. doi: 10.1117/12.436665
[12] MIURA T, MURAKAMI K, SUZUKI K, et al. Nikon EUVL development progress update[J]. Proceedings of SPIE, 2008, 6921: 69210M. doi: 10.1117/12.772444
[13] 芯智讯.从全球光刻机巨头ASML的成长史, 看中国半导体装备业的发展[EB/OL]. (2018-05-23)[2019-01-22]. http://www.icsmart.cn/19096/.

XIN ZH X. Focusing on the development of China's semiconductor equipment industry from the growth history of global lithography company-ASML[EB/OL]. (2018-05-23)[2019-01-22]. http://www.icsmart.cn/19096/. (in Chinese)
[14] 蔡懿, 王文涛, 杨明, 等.基于强激光辐照固体锡靶产生极紫外光源的实验研究[J].物理学报, 2008, 57(8): 5100-5104. doi: 10.3321/j.issn:1000-3290.2008.08.069

CAI Y, WANG W T, YANG M, et al. Experimental study on extreme ultraviolet light generation from high power laser-irradiated tin slab[J]. Acta Physica Sinica, 2008, 57(8): 5100-5104. (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.08.069
[15] CHEN H, WANG X B, DUAN L, et al. Angular distribution of ions and extreme ultraviolet emission in laser-produced tin droplet plasma[J]. Journal of Applied Physics, 2015, 117(19): 193302. doi: 10.1063/1.4921532
[16] 吴文娟.极紫外和软X射线窄带多层膜的研究[D].上海: 同济大学, 2007.

WU W J. The study of extreme ultraviolet and Soft X-Ray narrowband multilayers[D]. Shanghai: Tongji University, 2007. (in Chinese)
[17] BENSCHOP J, BANINE V, LOK S, et al. Extreme ultraviolet lithography: status and prospects[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2008, 26(6): 2204-2207. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227888465/
[18] 匡尚奇, 李硕, 杨海贵, 等.极紫外宽带多层膜反射镜离散化膜系的设计与制备[J].光学  精密工程, 2018, 26(10): 2395-2406. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201810007

KUANG SH Q, LI SH, YANG H G, et al. Design and fabrication of EUV broadband multilayer mirrors with discrete thicknesses[J]. Opt. Precision Eng., 2018, 26(10): 2395-2406. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201810007
[19] BAJT S, ALAMEDA J B, BARBEE JR T W, et al. Improved reflectance and stability of Mo/Si multilayer[J]. Proceedings of SPIE, 2001, 4506: 65-75. doi: 10.1117/12.450946
[20] PELIZZO M G, SUMAN M, MONACO G, et al. High performance EUV multilayer structures insensitive to capping layer optical parameters[J]. Optics Express, 2008, 16(19): 15228-15237. doi: 10.1364/OE.16.015228
[21] FOMENKOV I. EUV source for high volume manufacturing: performance at 250 W and key technologies for power scaling (Keynote presentation)[R]. Dublin, Ireland, 2017.
[22] KAWASUJI Y, NOWAK K M, HORI T, et al. Key components technology update of the 250 W high-power LPP-EUV light source[J]. Proceedings of SPIE, 2017, 10143: 101432G.
[23] HENKE B L, GULLIKSON E M, DAVIS J C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30, 000 eV, Z = 1-92[J]. Atomic Data and Nuclear Data Tables, 1993, 54(2): 181-342. doi: 10.1006/adnd.1993.1013
[24] BANINE V, BENSCHOP J P, LEENDERS M, et al. Relationship between an EUV source and the performance of an EUV lithographic system[J]. Proceedings of SPIE, 2000, 3997: 126-135. doi: 10.1117/12.390048
[25] SCHRIEVER G, MAGER S, NAWEED A, et al. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy[J]. Applied Optics, 1998, 37(7): 1243-1248. doi: 10.1364/AO.37.001243
[26] 兰慧. Sn和SnO2靶激光等离子体特性的研究[D].武汉: 华中科技大学, 2016.

LAN H. Research on the characteristics of laser produced Sn and SnO2 plasma[D]. Wuhan: Huazhong University of Science & Technology, 2016. (in Chinese)
[27] RAJYAGURU C, HIGASHIGUCHI T, KOGA M, et al. Parametric optimization of a narrow-band 13.5-nm emission from a Li-based liquid-jet target using dual nano-second laser pulses[J]. Applied Physics B, 2005, 80(4-5): 409-412. doi: 10.1007/s00340-005-1777-6
[28] NAGANO A, INOUE T, NICA P E, et al. Extreme ultraviolet source using a forced recombination process in lithium plasma generated by a pulsed laser[J]. Applied Physics Letters, 2007, 90(15): 151502. doi: 10.1063/1.2719672
[29] TANAKA H, AKINAGA K, TAKAHASHI A, et al. Emission characteristics of EUV light source by CO2 laser-produced Xe and Sn plasma[J]. Proceedings of SPIE, 2004, 5448: 737-748. doi: 10.1117/12.547372
[30] HANSSON B A M, HERTZ H M. Liquid-jet laser-plasma extreme ultraviolet sources: from droplets to filaments[J]. Journal of Physics D: Applied Physics, 2004, 37(23): 3233-3243. doi: 10.1088/0022-3727/37/23/004
[31] CUMMINGS A, O'SULLIVAN G, DUNNE P, et al. Variable composition laser-produced Sn plasmas-a study of their time-independent ion distributions[J]. Journal of Physics D: Applied Physics, 2004, 37(17): 2376-2384. doi: 10.1088/0022-3727/37/17/006
[32] KIEFT E R, GARLOFF K, VAN DER MULLEN J J A M, et al. Comparison of experimental and simulated extreme ultraviolet spectra of xenon and tin discharges[J]. Physical Review E, 2005, 71(3): 036402. doi: 10.1103/PhysRevE.71.036402
[33] TOMIE T, AOTA T, UENO Y, et al. Use of tin as a plasma source material for high conversion efficiency[J]. Proceedings of SPIE, 2003, 5037: 147-155. doi: 10.1117/12.483751
[34] TAO Y, NISHIMURA H, OKUNO T, et al. Dynamic imaging of 13.5 nm extreme ultraviolet emission from laser-produced Sn plasmas[J]. Applied Physics Letters, 2005, 87(24): 241502. doi: 10.1063/1.2139990
[35] SHIMADA Y, NISHIMURA H, NAKAI M, et al. Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams[J]. Applied Physics Letters, 2005, 86(5): 051501. doi: 10.1063/1.1856697
[36] YUSPEH S, SEQUOIA K L, TAO Y, et al. Optimization of the size ratio of Sn sphere and laser focal spot for an extreme ultraviolet light source[J]. Applied Physics Letters, 2008, 93(22): 221503. doi: 10.1063/1.3036956
[37] HARILAL S S, SIZYUK T, SIZYUK V, et al. Efficient laser-produced plasma extreme ultraviolet sources using grooved Sn targets[J]. Applied Physics Letters, 2010, 96(11): 111503. doi: 10.1063/1.3364141
[38] CUMMINS T, O'GORMAN C, DUNNE P, et al. Colliding laser-produced plasmas as targets for laser-generated extreme ultraviolet sources[J]. Applied Physics Letters, 2014, 105(4): 044101. doi: 10.1063/1.4891762
[39] BÖWERING N R, FOMENKOV I V, BRANDT D C, et al. Performance results of laser-produced plasma test and prototype light sources for EUV lithography[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(4): 041504. doi: 10.1117/1.3224942
[40] MIZOGUCHI H, NAKARAI H, ABE T, et al. Performance of one hundred watt HVM LPP-EUV source[J]. Proceedings of SPIE, 2015, 9422: 94220C. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215024557
[41] WHITE J, DUNNE P, HAYDEN P, et al. Optimizing 13.5 nm laser-produced tin plasma emission as a function of laser wavelength[J]. Applied Physics Letters, 2007, 90(18): 181502. doi: 10.1063/1.2735944
[42] AOTA T, NAKAI Y, FUJIOKA S, et al. Characterization of extreme ultraviolet emission from tin-droplets irradiated with Nd:YAG laser plasmas[J]. Proceedings of SPIE, 2008, 6921: 69212T. doi: 10.1088/1742-6596/112/4/042064
[43] ANDO T, FUJIOKA S, NISHIMURA H, et al. Optimum laser pulse duration for efficient extreme ultraviolet light generation from laser-produced tin plasmas[J]. Applied Physics Letters, 2006, 89(15): 151501. doi: 10.1063/1.2361260
[44] HARILAL S S, TILLACK M S, TAO Y, et al. Extreme-ultraviolet spectral purity and magnetic ion debris mitigation by use of low-density tin targets[J]. Optics Letters, 2006, 31(10): 1549-1551. doi: 10.1364/OL.31.001549
[45] BANINE V Y, KOSHELEV K N, SWINKELS G H P M. Physical processes in EUV sources for microlithography[J]. Journal of Physics D: Applied Physics, 2011, 44(25): 253001. doi: 10.1088/0022-3727/44/25/253001
[46] ENDO A, ABE T, HOSHINO H, et al. CO2 laser-produced Sn plasma as the solution for high-volume manufacturing EUV lithograph[J]. Proceedings of SPIE, 2007, 6703: 670309. doi: 10.1117/12.732254
[47] ENDO A, KOMORI H, UENO Y, et al. Laser-produced plasma source development for EUV lithography[J]. Proceedings of SPIE, 2009, 7271: 727108. doi: 10.1117/12.813639
[48] FUJIOKA S, SHIMOMURA M, SHIMADA Y, et al. Pure-tin microdroplets irradiated with double laser pulses for efficient and minimum-mass extreme-ultraviolet light source production[J]. Applied Physics Letters, 2008, 92(24): 241502. doi: 10.1063/1.2948874
[49] FREEMAN J R, HARILAL S S, VERHOFF B, et al. Laser wavelength dependence on angular emission dynamics of Nd:YAG laser-produced Sn plasmas[J]. Plasma Sources Science and Technology, 2012, 21(5): 055003. doi: 10.1088/0963-0252/21/5/055003
[50] LETARDI T, LO D, ZHENG C E. Particle dynamics of debris produced during laser-plasma soft X-ray generation[J]. Journal of Applied Physics, 2001, 89(2): 1458-1462. doi: 10.1063/1.1334365
[51] YANAGIDA T, NAGANO H, WADA Y, et al. Characterization and optimization of tin particle mitigation and EUV conversion efficiency in a laser produced plasma EUV light source[J]. Proceedings of SPIE, 2011, 7969: 79692T. doi: 10.1117/12.879189
[52] NⅡMI G, UENO Y, NISHIGORI K, et al. Experimental evaluation of a stopping power of high-energy ions from a laser-produced plasma by a magnetic field[J]. Proceedings of SPIE, 2003, 5037: 370-377. doi: 10.1117/12.483747
[53] HARILAL S S, O'SHAY B, TAO Y, et al. Ion debris mitigation from tin plasma using ambient gas, magnetic field and combined effects[J]. Applied Physics B, 2007, 86(3): 547-553. doi: 10.1007/s00340-006-2532-3
[54] SUN Y B, LIN J Q, GAO X, et al. Characteristics of ion debris from laser-produced tin plasma and mitigation of energetic ions by ambient gas[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(3): 392-395. doi: 10.1007/s11433-012-4644-6
[55] MIZOGUCHI H, NAKARAI H, ABE T, et al. Performance of one hundred watt HVM LPP-EUV source[J]. Proceedings of SPIE, 2015, 9422: 94220C. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215024557
[56] 尹志坚. EUV光刻机: ASML 2018年总销量18台, 计划明年30台[EB/OL]. (2019-01-25)[2019-02-22]. http://www.elecfans.com/d/858465.html. YIN ZH J. EUV lithography machine: total sales of ASML EUV lithography machine is 18 in 2018, and that number is projected to increase to 30 in 2019[EB/OL]. (2019-01-25)[2019-02-22]. http://www.elecfans.com/d/858465.html. (in Chinese)
[57] 旺材芯片. ASML今年将推新一代EUV光刻机NXE: 3400C产能170片/小时[EB/OL]. (2019-01-25)[2019-02-22]. https://www.xianjichina.com/special/detail_382932.html.

WANG C X P. ASML will push a new generation of EUV lithography machine NXE this year: 3400C capacity 170 pieces/hour[EB/OL]. (2019-01-25)[2019-02-22]. https://www.xianjichina.com/special/detail_382932.html. (in Chinese)
[58] MIZOGUCHI H, NAKARAI H, ABE T, et al. High power LPP-EUV source with long collector mirror lifetime for high volume semiconductor manufacturing[J]. Proceedings of SPIE, 2018, 10583: 1058318. http://cn.bing.com/academic/profile?id=f8eff57ec8ecff5479d1b3b2737f1fcf&encoded=0&v=paper_preview&mkt=zh-cn
[59] NOWAK K M, OHTA T, SUGANUMA T, et al. Multiline short-pulse solid-state seeded carbon dioxide laser for extreme ultraviolet employing multipass radio frequency excited slab amplifier[J]. Optics Letters, 2013, 38(6): 881-883. doi: 10.1364/OL.38.000881
[60] NOWAK K M, OHTA T, SUGANUMA T, et al. Spectral characteristics of quantum-cascade laser operating at 10.6 μm wavelength for a seed application in laser-produced-plasma extreme UV source[J]. Optics Letters, 2012, 37(22): 4765-4767. doi: 10.1364/OL.37.004765
[61] MIZOGUCHI H, NAKARAI H, ABE T, et al. Performance of 250 W high-power HVM LPP-EUV source[J]. Proceedings of SPIE, 2017, 10143: 101431J. doi: 10.1117/12.2256652.full
[62] YOICHI T, TATSUYA Y, JUNICHI N, et al. Efficient pulse amplification using a transverse-flow CO2 laser for extreme ultraviolet light source[J]. Optics Letters, 2012, 37(16):3300. doi: 10.1364/OL.37.003300
[63] PIRATI A, PEETERS R, SMITH D, et al. EUV lithography performance for manufacturing: status and outlook[J]. Proceedings of SPIE, 2016, 9776: 97760A. https://www.researchgate.net/publication/299644651_EUV_lithography_performance_for_manufacturing_status_and_outlook?ev=auth_pub
[64] 徐明飞, 庞武斌, 徐象如, 等.高数值孔径投影光刻物镜的光学设计[J].光学  精密工程, 2016, 24(4): 740-746. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604008

XU M F, PANG W B, XU X R, et al. Optical design of high-numerical aperture lithographic lenses[J]. Opt. Precision Eng., 2016, 24(4): 740-746. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604008
[65] 中国电子报社.解决集成电路"掐脖子"问题, 光刻机这篇文章怎么做?[EB/OL].(2018-07-12)[2019-03-26]. http://www.sohu.com/a/240821218_464075.

CHINA ELECTRONIC NEWSPAPER. To solve the "neck pinching" problem of integrated circuits, what should photolithography do?[EB/OL]. (2018-07-12)[2019-03-26]. http://www.sohu.com/a/240821218_464075. (in Chinese)
[66] 半导体行业联盟.国产22 nm光刻机, 可制造10纳米芯片![EB/OL]. (2018-11-30)[2019-02-26]. http://www.sohu.com/a/278788826_756356.

SEMICONDUCTOR INDUSNY ALLIANCE. Domestic 22nm lithography machine can manufacture 10 nanometer chips![EB/OL]. (2018-11-30)[2019-02-26]. http://www.sohu.com/a/278788826_756356. (in Chinese)