[1] 张吉英, 蒋大勇, 鞠振刚, 等.用于日盲波段的MgZnO薄膜材料和紫外探测器[J].中国光学与应用光学, 2008, 1(1):80-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802700006

ZHANG J Y, JIANG D Y, JU ZH G, et al.. MgxZn1-xO thin film and UV detector for solar-blind wavelength[J]. Chinese Journal of Optics and Applied Optics, 2008, 1(1):80-84.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802700006
[2] FANG Y J, DONG Q F, SHAO Y CH, et al.. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J]. Nature Photonics, 2015, 9(10):679-686. doi: 10.1038/nphoton.2015.156
[3] 王世涛, 张伟, 王强.红外探测器件在低温背景下的探测率测试[J].光学 精密工程, 2012, 20(3):484-491. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201203005

WANG SH T, ZHANG W, WANG Q. Measurement for detectivity of infrared detectors in low temperature background[J]. Opt. Precision Eng., 2012, 20(3):484-491.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201203005
[4] HU L, ZHU L P, HE H P, et al.. Colloidal chemically fabricated ZnO:Cu-based photodetector with extended UV-visible detection waveband[J]. Nanoscale, 2013, 5(20):9577-9581. doi: 10.1039/c3nr01979a
[5] 唐小强, 陈裕雲, 罗燕妮, 等.基于TiO2 NRs@ZnIn2S4 NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J].分析化学, 2019, 47(8):1188-1194. http://d.old.wanfangdata.com.cn/Periodical/fxhx201908009

TANG X Q, CHEN Y Y, LUO Y N, et al.. A novel glutathione photoelectrochemical sensor based on titanium dioxide nanorods@ZnIn2S4 nansheets nanocomposites[J]. Chinese J. Anal. Chem., 2019, 47(8):1188-1194.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201908009
[6] LI X D, GAO C T, DUAN H G, et al.. High-performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure[J]. Small, 2013, 9(11):2005-2011. doi: 10.1002/smll.201202408
[7] 胡轶, 徐思伟, 李想, 等.自供能ZnO/ZnS异质结紫外探测器的性能研究[J].材料研究学报, 2019, 33(7):523-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201907006

HU Y, XU S W, LI X, et al.. Performance of self-powered UV photodetector based on ZnO/ZnS heterojunction[J]. Chin. J. Mater. Res., 2019, 33(7):523-529.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201907006
[8] 胡明江, 晋兵营.基于CuO/ZnO异质结纳米花的薄膜型丙酮传感器研究[J].分析化学, 2019, 47(3):363-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005

HU M J, JIN B Y. Research on film type acetone sensor based on copper oxide/zinc oxide heterostructure nanoflower[J]. Chinese J. Anal. Chem., 2019, 47(3):363-370.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxhx201903005
[9] 翟英娇, 李金华, 陈新影, 等.镉掺杂氧化锌纳米花的制备及其光催化活性[J].中国光学, 2014, 7(1):124-130. http://www.chineseoptics.net.cn/CN/abstract/abstract9105.shtml

ZHAI Y J, LI J H, CHEN X Y, et al.. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity[J]. Chinese Optics, 2014, 7(1):124-130.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9105.shtml
[10] 宋志明, 赵东旭, 郭振, 等.ZnO纳米线紫外探测器的制备和快速响应性能的研究[J].物理学报, 2012, 61(5):052901. http://d.old.wanfangdata.com.cn/Periodical/wlxb201205016

SONG ZH M, ZHAO D X, GUO ZH, et al.. Fabrication and fast photoresponse properties of ZnO nanowires photodetectors[J]. Acta Physica Sinica, 2012, 61(5):052901.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201205016
[11] KHAYATIAN A, ASGAR V, RAMAZANI A, et al.. Diameter-controlled synthesis of ZnO nanorods on Fe-doped ZnO seed layer and enhanced photodetection performance[J]. Materials Research Bulletin, 2017, 94:77-84. doi: 10.1016/j.materresbull.2017.05.023
[12] YAN SH K, RAI S C, ZHENG ZH, et al.. Piezophototronic effect enhanced UV/Visible photodetector based on ZnO/ZnSe heterostructure core/shell nanowire array and its self-powered performance[J]. Advanced Electronic Materials, 2016, 2(12):1600242. doi: 10.1002/aelm.201600242
[13] 陈全友, 谭学才, 杜方凯, 等.基于CdS敏化Fe:TiO2纳米片的光电传感器对Cu2+的检测[J].分析化学, 2018, 46(2):232-238. http://d.old.wanfangdata.com.cn/Periodical/fxhx201802012

CHEN Q Y, TAN X C, DU F K, et al.. A photoelectrochemical sensor based on CdS sensitized Fe:TiO2 nanosheets for determination of Cu2+[J]. Chinese J. Anal. Chem., 2018, 46(2):232-238.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201802012
[14] WEI R B, KUANG P Y, CHENG H, et al.. Plasmon-enhanced photoelectrochemical water splitting on gold NPs decorated ZnO/CdS nanotube arrays[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5):4249-4257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=857fa097309c5a3892f99a419177e3d7
[15] DING M, YAO N N, WANG CH G, et al.. ZnO@CdS core-shell heterostructures:fabrication, enhanced photocatalytic, and photoelectrochemical performance[J]. Nanoscale Research Letters, 2016, 11(1):205. doi: 10.1186/s11671-016-1432-7
[16] ZHAO H, DONG Y M, JIANG P P, et al.. Light-assisted preparation of a ZnO/CdS nanocomposite for enhanced photocatalytic H2 evolution:an insight into importance of in situ generated ZnS[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5):969-977. doi: 10.1021/acssuschemeng.5b00102
[17] TAK Y, HONG S J, LEE J S, et al.. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion[J]. Journal of Materials Chemistry, 2009, 19(33):5945-5951. doi: 10.1039/b904993b
[18] SALEM M, AKIR S, MASSOUDI I, et al.. Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites[J]. Journal of Alloys and Compounds, 2018, 767:982-987. doi: 10.1016/j.jallcom.2018.07.202
[19] LI P, HOU CH CH, ZHANG X H, et al.. Ethylenediamine-functionalized CdS/tetra(4-carboxyphenyl)porphyrin iron(Ⅲ) chloride hybrid system for enhanced CO2 photoreduction[J]. Applied Surface Science, 2018, 459:292-299. doi: 10.1016/j.apsusc.2018.08.002
[20] SELMAN A M, HASSAN Z. Highly sensitive fast-response UV photodiode fabricated from rutile TiO2 nanorod array on silicon substrate[J]. Sensors and Actuators A:Physical, 2015, 221:15-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8e5be87afe053f7a1f60c348a1a4ef5d
[21] KUMAR P S, RAJ A D, MANGALARAJ D, et al.. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction(SILAR) method[J]. Thin Solid Films, 2010, 518(24):e183-e186. doi: 10.1016/j.tsf.2010.03.094
[22] LV J P, FANG M H. Photoluminescence study of interstitial oxygen defects in ZnO nanostructures[J]. Materials Letters, 2018, 218:18-21. doi: 10.1016/j.matlet.2018.01.137
[23] VANALAKAR S A, MALI S S, SURYAWANSHI M P, et al.. Photoluminescence quenching of a CdS nanoparticles/ZnO nanorods core-shell heterogeneous film and its improved photovoltaic performance[J]. Optical Materials, 2014, 37:766-772. doi: 10.1016/j.optmat.2014.09.005
[24] LAVAND A B, MALGHE Y S. Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite[J]. Journal of Saudi Chemical Society, 2015, 19(5):471-478. doi: 10.1016/j.jscs.2015.07.001
[25] KAMBLE A, SINHA B, CHUNG K, et al.. Facile linker free growth of CdS nanoshell on 1-D ZnO:solar cell application[J]. Electronic Materials Letters, 2015, 11(2):171-179. doi: 10.1007/s13391-014-4236-x
[26] LI B X, WANG Y F. Synthesis, microstructure, and photocatalysis of ZnO/CdS nano-heterostructure[J]. Journal of Physics and Chemistry of Solids, 2011, 72(10):1165-1169. doi: 10.1016/j.jpcs.2011.07.010
[27] JUN H K, CAREEM M A, AROF A K. A suitable polysulfide electrolyte for CdSe quantum dot-sensitized solar cells[J]. International Journal of Photoenergy, 2013, 2013:942139. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_bb2b1d57122900a9cd5a4c0aa43d8912
[28] 李陈欢, 肖丹.多硫电解质对CdS薄膜电池光电性能影响研究[J].化学研究与应用, 2010, 22(8):1042-1045. doi: 10.3969/j.issn.1004-1656.2010.08.015

LI CH H, XIAO D. Researches on the polysulfide electrolyte effect for CdS thin film photoelectrochemical cells[J]. Chemical Research and Application, 2010, 22(8):1042-1045.(in Chinese) doi: 10.3969/j.issn.1004-1656.2010.08.015