Volume 13 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
LIU Jun-hao, LI Rui-chen. Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes[J]. Chinese Optics, 2020, 13(2): 333-343. doi: 10.3788/CO.20201302.0333
Citation: LIU Jun-hao, LI Rui-chen. Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes[J]. Chinese Optics, 2020, 13(2): 333-343. doi: 10.3788/CO.20201302.0333

Analysis of thermal drift in high performance interferometric fiber-optic gyroscopes

doi: 10.3788/CO.20201302.0333
Funds:

Ministry of Equipment Development 

More Information
  • Corresponding author: LIU Jun-hao, E-mail:deishi5204@163.com
  • Received Date: 17 May 2019
  • Rev Recd Date: 11 Jun 2019
  • Publish Date: 01 Apr 2020
  • In order to improve accuracy and thermal performance, an analytical model of thermal-induced drift in interferometric fiber-optic gyroscopes containing all of the known phase perturbations is proposed. Unlike in previous studies, by incorporating fiber birefringence as one of the model's known error sources, the proposed model directly relates gyro performance to mechanical, geometric, thermal and optical parameters in coiled fibers. The influence of these parameters on the gyro drift was numerically calculated according to the presented model. Measurement results of a quadrupole coil within gyroscopes at 10-3 deg/h accuracy confirmed that the bias and its thermal drift induced by the intrinsic high birefringence and its thermal fluctuation in polarization-maintaining fibers are in the order of 10-3 deg/h and 10-2 deg/h. The results also confirmed that the thermal drift induced by the Shupe effect and the photoelastic effect in single-mode fibers are in the order of 10-4 deg/h and 10-3 deg/h, respectively. The proposed model shows that the highly stress-induced birefringence in polarization-maintaining fibers is a dominant source of error that results in bias and thermal drift in high performance interferometric fiber-optic gyroscopes. The model also comprehensively describes how the errors rise from fiber performance in fiber-optic gyroscopes and explains the non-linear dependence that the gyroscopic error has on fiber birefringence.

     

  • loading
  • [1]
    HERVRE C L. The Fiber-Optic Gyroscope[M]. 2nd ed. Boston:Artech House, 2014.
    [2]
    PATUREL Y, HONTHAAS J, LEFÈVRE H, et al.. One nautical mile per month FOG-based strapdown inertial navigation system:a dream already within reach?[J]. Gyroscopy and Navigation, 2014, 5(1):1-8. doi: 10.1134/S207510871401009X
    [3]
    VALI V, SHORTHILL R W. Fiber ring interferometer[J]. Applied Optics, 1976, 15(5):1099-1100. doi: 10.1364/AO.15.001099
    [4]
    SHUPE D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5):654-655. doi: 10.1364/AO.19.000654
    [5]
    FRIGO N J. Compensation of linear sources of non-reciprocity in Sagnac interferometers[J]. Proceedings of SPIE, 1983, 412:268-271. doi: 10.1117/12.935827
    [6]
    LEFÈVRE H C. The fiber-optic gyroscope:challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6):828-832. doi: 10.1016/j.yofte.2013.08.007
    [7]
    KHAN J A, GUDMUNDSDOTTIR L, ALAM M. Fiber optic gyroscope coils:performance characterization[J]. Proceedings of SPIE, 2017, 10208:1020807. doi: 10.1117/12.2261977
    [8]
    MINAKUCHI S, SANADA T, TAKEDA N, et al.. Thermal strain in lightweight composite fiber-optic gyroscope for space application[J]. Journal of Lightwave Technology, 2015, 33(12):2658-2662. doi: 10.1109/JLT.2014.2375198
    [9]
    CHAMOUN J N, DIGONNET M J F. Noise and bias error due to polarization coupling in a fiber optic gyroscope[J]. Journal of Lightwave Technology, 2015, 33(13):2839-2847. doi: 10.1109/JLT.2015.2416155
    [10]
    MOHR F, SCHADT F. Bias error in fiber optic gyroscopes due to elasto-optic interactions in the sensor fiber[J]. Proceedings of SPIE, 2004, 5502:410-413. doi: 10.1117/12.566654
    [11]
    MOHR F, SCHADT F. Rigorous treatment of fiber-environmental interactions in fiber gyroscopes[C]. Proceedings of 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, IEEE, 2008: 372-375.
    [12]
    MOHR F, SCHADT F. Error signal formation in FOGs through thermal and elastooptical environmental influences on the sensing coil[C]. International Sensors and Systems Symposium, Karlsruhe, 2011.
    [13]
    OGUT S, OSUNLUK B, OZBAY E. Modeling of thermal sensitivity of a fiber optic gyroscope coil with practical quadrupole winding[C]. Proceedings of SPIE, 2017, 10208: 1020806.
    [14]
    TATEDA M, TANAKA S, SUGAWARA Y. Thermal characteristics of phase shift in jacketed optical fibers[J]. Applied Optics, 1980, 19(5):770-773 doi: 10.1364/AO.19.000770
    [15]
    LAGAKOS N, BUCARO J A, JARZYNSKI J. Temperature-induced optical phase shifts in fibers[J]. Applied Optics, 1981, 20(13):2305-2308. doi: 10.1364/AO.20.002305
    [16]
    MUSHA T, KAMIMURA J I, NAKAZAWA M. Optical phase fluctuations thermally induced in a single-mode optical fiber[J]. Applied Optics, 1982, 21(4):694-698. doi: 10.1364/AO.21.000694
    [17]
    WONG D. Thermal stability of intrinsic stress birefringence in optical fibers[J]. Journal of Lightwave Technology, 1990, 8(11):1757-1761. doi: 10.1109/50.60576
    [18]
    CHIANG K S. Temperature sensitivity of coated stress-induced birefringence optical fibers[J]. Optical Engineering, 1997, 36(4):999-1007. doi: 10.1117/1.601293
    [19]
    MCDEARMON G F. Theoretical analysis of the minimization of the temperature sensitivity of a coated optical fiber in a fiber-optic polarimeter[J]. Journal of Lightwave Technology, 1990, 8(1):51-55. doi: 10.1109/50.45929
    [20]
    MOHR F, KIESEL P. Thermal sensitivity of sensing coils for fibre gyroscopes[J]. Proceedings of SPIE, 1984, 514:305-308. doi: 10.1117/12.945103
    [21]
    MOHR F. Thermooptically induced bias drift in fiber optical Sagnac interferometers[J]. Journal of Lightwave Technology, 1996, 14(1):27-41. doi: 10.1109/50.476134
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article views(1808) PDF downloads(63) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return