Volume 13 Issue 2
Apr.  2020
Turn off MathJax
Article Contents
YUAN Zhi-guo, MA Xiu-zhen, LIU Xiao-nan, MU Yan-long, YANG Xiao-tao. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. doi: 10.3788/CO.20201302.0281
Citation: YUAN Zhi-guo, MA Xiu-zhen, LIU Xiao-nan, MU Yan-long, YANG Xiao-tao. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. doi: 10.3788/CO.20201302.0281

Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology

doi: 10.3788/CO.20201302.0281
Funds:

National Natural Science Foundation of China 61405046

National Natural Science Foundation of China 51709059

Natural Science Foundation of Heilongjiang 51305089

Marine Low-Speed Engine Project Phase-I CDGC01-KT03-BG-011

More Information
  • Corresponding author: YANG Xiao-tao,E-mail:yangxiaotao@hrbeu.edu.cn
  • Received Date: 10 May 2019
  • Rev Recd Date: 10 Jun 2019
  • Publish Date: 01 Apr 2020
  • To measure CO2 gas in the exhaust of the D4114B diesel engine, the volume fraction and temperature of the gas were studied and analyzed. Based on the principles of Tunable Diode Laser Absorption Spectroscopy (TDLAS), the process of exhaust gas measurement was simulated using various modules in the SIMULINK library of MATLAB. Through simulation, the relative temperature error of the CO2 was 0.03%. The simulation results were verified with a D4114B marine diesel engine. A visualization window was added to its exhaust pipe and a corresponding test system was installed. A tunable laser with a semiconductor as a working medium was used as the laser light source to carry out on-line tests of the CO2 temperature in the gas emissions. In this study, the relative error of the test was less than 4.0%. It can be seen from the results that the different between the temperature measured by the model built with a SIMULINK and that of the actual diesel exhaust emission is slight. Therefore, the simulation result can be used as a reference for the diesel engine exhaust temperature measurement.

     

  • loading
  • [1]
    杨晓涛.基于可调谐激光吸收光谱技术的柴油机排放测试技术研究[D].哈尔滨: 哈尔滨工程大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10217-1017241148.htm

    YANG X T.The research on testing technology for the diesel emission based on the tunable laser absorption spectroscopy technology[D]. Harbin: Harbin Engineering University, 2016.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10217-1017241148.htm
    [2]
    李茂刚, 闫春华, 薛佳, 等.近红外光谱结合小波变换-随机森林法快速定量分析甲醇汽油中甲醇含量[J].分析化学, 2019, 47(12):1995-2003. http://d.old.wanfangdata.com.cn/Periodical/fxhx201912019

    LI M G, YAN CH H, XUE J, et al. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12):1995-2003.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201912019
    [3]
    张春晓.基于可调谐半导体激光吸收光谱技术的O2和CO气体测量[D].杭州: 浙江大学, 2010.

    ZHANG CH X. O2 and CO sensing based on tunable diode laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
    [4]
    BURRICHTER B, PASEL C, LUCKAS M, et al..Tunable diode laser absorption spectroscopy zur feuchtebestimmung in organischen lösungsmitteln[J]. Chemie Ingenieur Technik, 2014, 86(1-2):136-143. doi: 10.1002/cite.201300045
    [5]
    孙兰香, 汪为, 田雪咏, 等.激光诱导击穿光谱微区分析的研究应用进展[J].分析化学, 2018, 46(10):1518-1527. doi: 10.11895/j.issn.0253-3820.181150

    SUN L X, WANG W, TIAN X Y, et al. Progress in research and application of micro-laser-induced breakdown spectroscopy[J].Chinese Journal of Analytical Chemistry, 2018, 46(10):1518-1527. (in Chinese) doi: 10.11895/j.issn.0253-3820.181150
    [6]
    束小文, 张玉钧, 阚瑞峰, 等.基于TDLAS技术的HCl气体在线探测温度补偿方法研究[J].光谱学与光谱分析, 2010, 30(05):1352-1356. doi: 10.3964/j.issn.1000-0593(2010)05-1352-05

    SHU X W, ZHANG Y J, KAN R F, et al.. An investigation of temperature compensation of Hcl gas online monitoring based on TDLAS method[J].Spectroscopy and Spectral Analysis, 2010, 30(5):1352-1356. (in Chinese) doi: 10.3964/j.issn.1000-0593(2010)05-1352-05
    [7]
    BOLSHOV M A, KURITSYN Y A, ROMANOSK Y V. Tunable diode laser spectroscopy as a technique for combustion diagnostics[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 106:45-66. doi: 10.1016/j.sab.2015.01.010
    [8]
    程永强, 张涛, 王鹗, 等.激光诱导荧光检测微流控芯片生化分析仪的研制[J].分析化学, 2008, 36(1):127-131. doi: 10.3321/j.issn:0253-3820.2008.01.027

    CHEN Y Q, ZHANG T, WANG E, et al. Development of integrated microfluidic chip-based bioanalyzer with laser-induced fluorescence detection[J]. Chinese Journal of Analytical Chemistry, 2008, 36(1):127-131(in Chinese) doi: 10.3321/j.issn:0253-3820.2008.01.027
    [9]
    ZHANG G Y, WANG G Q, HUANG Y, et al.. Reconstruction and simulation of temperature and CO2 concentration in an axisymmetric flame based on TDLAS[J]. Optik, 2018, 170:166-177. doi: 10.1016/j.ijleo.2018.05.123
    [10]
    朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J].中国光学, 2017, 10(4):455-461. doi: 10.3788/CO.20171004.0455

    ZHU X R, LU Y W, RAO Y ZH, et al.. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4):455-461.(in Chinese) doi: 10.3788/CO.20171004.0455
    [11]
    曾怡帅, 杨友良, 马翠红.有尘环境多组分气体成分检测系统的设计[J].发光学报, 2016, 37(7):859-865. http://d.old.wanfangdata.com.cn/Periodical/fgxb201607015

    ZENG Y SH, YANG Y L, MA C H. Design of the detection system of multi-components gas composition in dust environment[J]. Chinese Journal of Luminescence, 2016, 37(7):859-865.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201607015
    [12]
    何莹, 张玉钧, 阚瑞峰, 等.基于激光吸收光谱开放式大气CO2的在线监测[J].光谱学与光谱分析, 2009, 29(1):10-13. doi: 10.3964/j.issn.1000-0593(2009)01-0010-04

    HE Y, ZHANG Y J, KAN R F, et al.. Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum[J].Spectroscopy and Spectral Analysis, 2009, 29(1):10-13. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)01-0010-04
    [13]
    林庆宇, 段忆翔.激光诱导击穿光谱:从实验平台到现场仪器[J].分析化学, 2017, 45(9):1405-1414. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200809006

    LIN Y Q, DUAN Y X. Laser-induced breakdown spectroscopy:from experimental platform to field instrument[J]. Chinese Journal of Analytical Chemistry, 2017, 45(9):1405-1414.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx200809006
    [14]
    CHOI D W, JEON M G, CHO G R, et al.Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1):84-89. doi: 10.1007/s11630-016-0837-z
    [15]
    WANG T G, YANG CH W, WANG H Y, et al. Evidence for photoionization-driven broad absorpation line variability[J]. The Astrophysical Journal, 2015, 814(2):150.
    [16]
    李宁.基于可调谐激光吸收光谱技术的气体在线检测及二维分布重建研究[D].杭州: 浙江大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1416373

    LI N. Research on gas detection and 2D distribution reconstruction by tunable diode laser absorption spectroscopy technique[D]. Hangzhou: Zhejiang University, 2008.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1416373
    [17]
    CONG M L, GUO S X, WANG Y D.. A novel methane detection system based on InGaAsP distributed feedback laser[J]. Optical Application, 2011, 41(3):639-648P http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=60dfb3a0286930eba61d5e16421416b8
    [18]
    张兴磊, 张华, 王新晨, 等.直接离子化装置研究新进展[J].分析化学, 2018, 46(11):1703-1713. doi: 10.11895/j.issn.0253-3820.181509

    ZHANG X L, ZHANG H, WANG X CH, et al. Advances in ambient ionization for mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(11):1703-1713.(in Chinese) doi: 10.11895/j.issn.0253-3820.181509
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1781) PDF downloads(59) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return