Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
YU Xiao-ya, LIU Li-tuo, LI Rui, WANG Tong-quan. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087
Citation: YU Xiao-ya, LIU Li-tuo, LI Rui, WANG Tong-quan. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. doi: 10.3788/CO.20201301.0087

Measurements of absolute radiative emissions for supersonic reentry

doi: 10.3788/CO.20201301.0087
Funds:

National Natural Science Foundation of China Youth Project 61404171

More Information
  • Corresponding author: LIU Li-tuo, Email:liulituo@ime.ac.cn
  • Received Date: 09 Sep 2019
  • Rev Recd Date: 08 Nov 2019
  • Publish Date: 01 Feb 2020
  • An expansion tube facility was operated using two half-cylinder models with width of 45 mm and 90 mm respectively for producing high-enthalpy flows at the nominal velocity of 8 km/s relevant to Earth reentry. Spatially resolved emission spectroscopy in the wavelength range from 250 nm to 550 nm behind a shock wave was recorded by a spectrometer with ICCD camera. Shock wave stagnation streamline was observed along the flow direction. It is found that the spectrum are dominated by the CN(B-X) violet band. A halogen tungsten lamp was used to realize calibration and the absolute radiation luminance of the shock layer was obtained. By comparing the model widths normalized by two kinds of model radiances, it can be found that there is a strong self-absorption of high temperature gas radiation around the flow fluid. In addition, three-dimensional effect was observed. It can be found that the ratio between spectral radiance at 385.2 nm in the CN(B-X) violet 3-3 band and spectral radiance at 388.4 nm in the CN(B-X) violet 0-0 band is decreasing along the distance toward the model edge. The results illuminated that dynamical non-equilibrium features exists in the shock layer along the distance of the model edge.

     

  • †These authors contribute equally
  • loading
  • [1]
    LIEBHART H, HERDRICH G, FASOULAS S. Advances for radiation modeling for earth re-entry in PARADE: application to the STARDUST atmospheric entry, AIAA-2012-3196[R]. New orleans, Louisiana: AIAA, 2012.
    [2]
    GRINSTEAD J H, JENNISKENS P, CASSELL A M, et al.. Airborne observation of the hayabusa sample return capsule reentry, AIAA-2011-3329[R]. Honolulu, Hawaii: AIAA, 2011.
    [3]
    HERMANN T, LÖHLE S, ZANDER F, et al... Characterization of a reentry plasma wind-tunnel flow with vacuum-ultraviolet to near-infrared spectroscopy[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(3):673-688. doi: 10.2514/1.T4695
    [4]
    PORAT H, MORGAN R G, MCINTYRE T J. Study of radiative heat transfer in Titan atmospheric entry[C]. Proceedings of 28th International Congress of the Aeronautical Sciences, Launceston, 2012.
    [5]
    JOHNSTON C O, GNOFFO P A, MAZAHERI A. Influence of coupled radiation and ablation on the aerothermodynamic environment of planetary entry vehicles[J]. RTO Lecture Series, Von Karman Inst. for Fluid Dynamics, Rhode-St-Genèse, Belgium, 2013, 218:1-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gT/9jUxQkZ4dHqaZcqmM81P8hfii4jsZ36qGwGItmT0=
    [6]
    BRANDIS A M, JOHNSTON C O. Characterization of stagnation-point heat flux for earth entry AIAA-2014-2374[R]. Atlanta: AIAA, 2014.
    [7]
    GUPTA R N. Aerothermodynamic analysis of stardust sample return capsule with coupled radiation and ablation[J]. Journal of Spacecraft and Rockets, 2000, 37(4):507-514. doi: 10.2514/2.3592
    [8]
    GNOFFO P A, JOHNSTON C O, KLEB B B. Challenges to computational aerothermodynamic simulation and validation for planetary entry vehicle analysis, NASA RTO-EN-AVT-186[R]. Washington: NASA, 2010.
    [9]
    JACOBS P, MORGAN R, BRANDIS A, et al.. Design, operation and testing in expansion tube facilities for super-orbital re-entry[C]. STO-AVT-VKI Lecture Series Radiation and Gas-Surface Interaction Phenomena in High Speed Re-Entry (2013-AVT-218). 2013: 5-1-5-65. https://espace.library.uq.edu.au/view/UQ:326742
    [10]
    JACOBS C M, MCLNTYRE T J, MORGAN R G, et al.. Radiative heat transfer measurements in low-density titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2015, 29(4):835-844. doi: 10.2514/1.T4519
    [11]
    HOLLIS B R, STRIEPE S A, WRIGHT M J, et al.. Prediction of the aerothermodynamic environment of the huygens probe. AIAA-2005-4816[R]. Toronto: AIAA, 2005.
    [12]
    PARK C. Nonequilibrium Air Radiation (NEQAIR) Program: User's Manual, NASA-TM-86707[R]. Washington: NASA, 1985.
    [13]
    THOMAS G M, MENARD W A. Experimental measurements of nonequilibrium and equilibrium radiation from planetary atmospheres[J]. AIAA Journal, 1966, 4(2):227-237. doi: 10.2514/3.3423
    [14]
    GÖKÇEN T. N2-CH4-Ar chemical kinetic model for simulations of atmospheric entry to Titan, AIAA-2004-2469[R]. Portland: AIAA, 2004.
    [15]
    BOSE D, WRIGHT M J, BOGDANOFF D W, et al.. Modeling and experimental assessment of CN radiation behind a strong shock wave[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2):220-230. doi: 10.2514/1.16869
    [16]
    LABRACHERIE L, BILLIOTTE M, HOUAS L. Shock-tube analysis of argon influence in Titan radiative environment[J]. Journal of Thermophysics and Heat Transfer, 1996, 10(1):162-168. doi: 10.2514/3.767
    [17]
    LEWIS S W, MORGAN R G, MCINTYRE T J, et al.. Expansion tunnel experiments of earth reentry flow with surface ablation[J]. Journal of Spacecraft and Rockets, 2016, 53(5):887-899. doi: 10.2514/1.A33267
    [18]
    SHEIKH U A, MORGAN R G, MCINTYRE T J. Vacuum ultraviolet spectral measurements for superorbital earth entry in X2 expansion tube[J]. AIAA Journal, 2015, 53(12):3589-3602. doi: 10.2514/1.J054027
    [19]
    SHEIKH U A, JACOBS C, LAUX C O, et al.. Measurements of radiating flow fields in the vacuum ultraviolet[C]. Proceedings of the 29th International Symposium on Shock Waves, Springer, 2013: 653-658.
    [20]
    BRANDIS A M, MORGAN R G, MCINTYRE T J, et al.. Nonequilibrium radiation intensity measurements in simulated Titan atmospheres[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2):291-300. doi: 10.2514/1.44482
    [21]
    杨乾锁, 余西龙, 姜乃波, 等.激波波后氮分子发射光谱的测量[J].流体力学实验与测量, 2000, 14(3):57-60+65. doi: 10.3969/j.issn.1672-9897.2000.03.011

    YANG Q S, YU X L, JIANG N B, et al.. Spectral measurement of nitrogen emission behind normal shock wave[J]. Experiments and Measurements in Fluid Mechanics, 2000, 14(3):57-60+65. (in Chinese) doi: 10.3969/j.issn.1672-9897.2000.03.011
    [22]
    杨虹, 张雅声, 丁文哲.飞艇红外探测系统探测高超声速目标性能研究[J].中国光学, 2016, 9(5):596-605. http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml

    YANG H, ZHANG Y SH, DING W ZH. Detectability of airship infrared detection system to hypersonic vehicle[J]. Chinese Optics, 2016, 9(5):596-605. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9447.shtml
    [23]
    孟凡胜, 熊仁生, 刘朝晖.高速再入体热辐射模型的分析与修正[J].光学 精密工程, 2006, 14(8):574-578. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009

    MENG F SH, XIONG R SH, LIU CH H. Analysis of hypersonic reentry radiation model[J]. Opt. Precision Eng., 2006, 14(8):574-578. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc200604009
    [24]
    LIN X, YU X L, LI F, et al.. Measurements of non-equilibrium and equilibrium temperature behind a strong shock wave in simulated martian atmosphere[J]. Acta Mechanica Sinica, 2012, 28(5):1293-1302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb-e201205008
    [25]
    BRANDIS A M, GOLLAN R J, SCOTT M P, et al.. Expansion tube operating, conditions for studying nonequilibrium radiation relevant to Titan aerocapture, AIAA-2006-4517[R]. Sacramemto: AIAA, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(1582) PDF downloads(49) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return