Volume 13 Issue 1
Feb.  2020
Turn off MathJax
Article Contents
LIN Yu, JIANG Chun-ping. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043
Citation: LIN Yu, JIANG Chun-ping. Recent progress in tunable metalenses[J]. Chinese Optics, 2020, 13(1): 43-61. doi: 10.3788/CO.20201301.0043

Recent progress in tunable metalenses

doi: 10.3788/CO.20201301.0043
Funds:

Supported by National Natural Science Foundation of China No.61674163

More Information
  • Corresponding author: JIANG Chun-ping E-mail:cpjiang2008@sinano.ac.cn
  • Received Date: 07 Nov 2018
  • Rev Recd Date: 02 Jan 2019
  • Publish Date: 01 Feb 2020
  • Emerging optical devices demand miniaturized, integrated and intelligent optical zoom systems, thus stimulating development in nano-optoelectronics. Metalenses are two-dimensional planar structures with lens function composed of arrays arranged specifically to equally focus wavelengths of light. Due to their ultrathin and lightweight properties and their ease of integration, it is expected that they will revolutionize optics by replacing the conventional bulky, curved lenses used that pervade optical devices. However, once the micro/nano-structures of a metalens are fabricated, their shape and size cannot be modified, which can not realize the real-time adjustment of focusing and will limit the further development of metalenses' functions and applications. Currently, substantial effort is being devoted to solving this problem. One of the most attractive aspects of metalenses is in the way they combine metasurface lenses with smart materials. In this article, we first provide an overview of novel tunable metalenses. Then, we elaborate and analyze their regulatory principles and device performance, respectively. Finally, we summarize the current problems and difficulties facing the development of tunable metalenses and describe the direction of their future development.

     

  • loading
  • [1]
    OKU H, HASHIMOTO K, ISHIKAWA M. Variable-focus lens with 1-kHz bandwidth[J]. Optics Express, 2004, 12(10): 2138-2149. doi: 10.1364/OPEX.12.002138
    [2]
    REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936. doi: 10.1364/OE.15.005931
    [3]
    贾洁姝.电控全息可变焦透镜的性能研究[D].哈尔滨: 哈尔滨工业大学, 2013: 1-7.

    JIA J SH. Performance study of tunable-focus electroholography lens[D]. Harbin: Harbin Institute of Technology, 2013: 1-7. (in Chinese)
    [4]
    张检发, 袁晓东, 秦石乔.可调太赫兹与光学超材料[J].中国光学, 2014, 7(3): 349-364. http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9144.shtml
    [5]
    ZHELUDEV N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582-583. doi: 10.1126/science.1186756
    [6]
    FEDOTOV V A, MLADYONOV P L, PROSVIRNIN S L, et al.Asymmetric propagation of electromagnetic waves through a planar chiral structure[J]. Physical Review Letters, 2006, 97(16): 167401. doi: 10.1103/PhysRevLett.97.167401
    [7]
    LANDY N I, SAJUYIGBE S, MOCK J J, et al.Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [8]
    ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
    [9]
    KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
    [10]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=551bc932ce7f12295ea2c36e57d9610e
    [11]
    GENEVET P, CAPASSO F, AIETA F, et al.Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. http://cn.bing.com/academic/profile?id=342e96585f9acadfeb719602a4ee2d3e&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    DING F, PORS A, BOZHEVOLNYI S I. Gradient metasurfaces: a review of fundamentals and applications[J]. Reports on Progress in Physics, 2018, 81(2): 026401. doi: 10.1088/1361-6633/aa8732
    [13]
    YU N F, AIETA F, GENEVET P, et al.A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u
    [14]
    SIDDIQUE R H, MERTENS J, HÖLSCHER H, et al.Scalable and controlled self-assembly of aluminum-based random plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703013
    [15]
    PORS A, NIELSEN M G, ERIKSEN R L, et al.Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Letters, 2013, 13(2): 829-834. doi: 10.1021/nl304761m
    [16]
    ZHENG G X, MVHLENBERND H, KENNEY M, et al.Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. https://www.ncbi.nlm.nih.gov/pubmed/25705870
    [17]
    REN M X, WU W, CAI W, et al.Reconfigurable metasurfaces that enable light polarization control by light[J]. Light: Science & Applications, 2017, 6(6): e16254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702019
    [18]
    ROGERS E T F, LINDBERG J, ROY T, et al.A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280
    [19]
    WINTZ D, GENEVET P, AMBROSIO A, et al.Holographic metalens for switchable focusing of surface plasmons[J]. Nano Letters, 2015, 15(5): 3585-3589. doi: 10.1021/acs.nanolett.5b01076
    [20]
    KHORASANINEJAD M, CAPASSO F. Metalenses: versatile multifunctional photonic components[J]. Science, 2017, 358(6367): eaam8100. doi: 10.1126/science.aam8100
    [21]
    WANG SH M, WU P C, SU V C, et al.Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    [22]
    WANG SH M, WU P C, SU V C, et al.A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. http://cn.bing.com/academic/profile?id=05a99d3d4fdf9a529f1dcbde67ecfda3&encoded=0&v=paper_preview&mkt=zh-cn
    [23]
    CHEN K, FENG Y J, MONTICONE F, et al.A reconfigurable active Huygens' Metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [24]
    HUANG Z D, HU B, LIU W G, et al.Dynamical tuning of terahertz meta-lens assisted by graphene[J]. Journal of the Optical Society of America B, 2017, 34(9): 1848-1854. doi: 10.1364/JOSAB.34.001848
    [25]
    陈勰宇, 田震.石墨烯太赫兹波动态调制的研究进展[J].中国光学, 2017, 10(1): 86-97. http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml

    CHEN X Y, TIAN ZH. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10(1): 86-97. (in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9505.shtml
    [26]
    KIM T T, KIM H, KENNEY M, et al.Amplitude modulation of anomalously refracted terahertz waves with gated-graphene metasurfaces[J]. Advanced Optical Materials, 2018, 6(1): 1700507. doi: 10.1002/adom.201700507
    [27]
    SHE A L, ZHANG SH Y, SHIAN S, et al.Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
    [28]
    FOROUZMAND A, SALARY M M, INAMPUDI S, et al.A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275. doi: 10.1002/adom.201701275
    [29]
    KAO T S, CHEN Y G, HONG M H. Controlling the near-field excitation of nano-antennas with phase-change materials[J]. Beilstein Journal of Nanotechnology, 2013, 4: 632-637. doi: 10.3762/bjnano.4.70
    [30]
    CHEN Y G, KAO T S, NG B, et al.Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698. doi: 10.1364/OE.21.013691
    [31]
    MICHEL A K U, CHIGRIN D N, MA T W W, et al.Using low-loss phase-change materials for mid-infrared antenna resonance tuning[J]. Nano Letters, 2013, 13(8): 3470-3475. doi: 10.1021/nl4006194
    [32]
    CHEN Y G, LI X, SONNEFRAUD Y, et al.Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660
    [33]
    WANG Q, ROGERS E T F, GHOLIPOUR B, et al.Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    [34]
    ZHONG J W, AN N, YI N B, et al.Broadband and tunable-focus flat lens with dielectric metasurface[J]. Plasmonics, 2016, 11(2): 537-541. doi: 10.1007/s11468-015-0087-z
    [35]
    秦雷, 谢晓瑛, 李君龙. MEMS技术发展现状及未来发展趋势[J].现代防御技术, 2017, 45(4): 1-5, 23. doi: 10.3969/j.issn.1009-086x.2017.04.001

    QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 2017, 45(4): 1-5, 23. (in Chinese) doi: 10.3969/j.issn.1009-086x.2017.04.001
    [36]
    LIN L Y, HERZIG H P. Introduction to the feature section on optical MEMS and nanophotonics[J]. IEEE Journal of Quantum Electronics, 2010, 46(9): 1235-1236. doi: 10.1109/JQE.2010.2052950
    [37]
    ROY T, ZHANG SH Y, JUNG I W, et al.Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865
    [38]
    ARBABI E, ARBABI A, KAMALI S M, et al.MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6
    [39]
    COLBURN S, ZHAN A L, MAJUMDAR A. Varifocal zoom imaging with large area focal length adjustable metalenses[J]. Optica, 2018, 5(7): 825-831. doi: 10.1364/OPTICA.5.000825
    [40]
    EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618
    [41]
    MAHSA KAMALI S, ARBABI E, ARBABI A, et al.Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews, 2016, 10(6): 1002-1008. http://cn.bing.com/academic/profile?id=be14a2a8e0fb9e0ac9fe6fd0be8c1010&encoded=0&v=paper_preview&mkt=zh-cn
    [42]
    CALLEWAERT F, VELEV V, JIANG SH ZH, et al.Inverse-designed stretchable metalens with tunable focal distance[J]. Applied Physics Letters, 2018, 112(9): 091102. doi: 10.1063/1.5017719
    [43]
    ZHU W M, SONG Q H, YAN L B, et al.A flat lens with tunable phase gradient by using random access reconfigurable metamaterial[J]. Advanced Materials, 2015, 27(32): 4739-4743. doi: 10.1002/adma.201501943
    [44]
    ZHANG J F, MACDONALD K F, ZHELUDEV N I. Nonlinear dielectric optomechanical metamaterials[J]. Light: Science & Applications, 2013, 2(8): e96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c13a3cfae31c277383c83efaedb7feb
    [45]
    OU J Y, PLUM E, ZHANG J F, et al.Giant nonlinearity of an optically reconfigurable plasmonic metamaterial[J]. Advanced Materials, 2016, 28(4): 729-733. doi: 10.1002/adma.201504467
    [46]
    AURO M P, SERGEI K T, KESTUTIS S. Gain through losses in nonlinear optics[J]. Light: science & Applications, 2018, 7, e43. http://cn.bing.com/academic/profile?id=bc48b9e7d207bcc1b1181964de9f0794&encoded=0&v=paper_preview&mkt=zh-cn
    [47]
    ZHU Y, HU X Y, FU Y L, et al.Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range[J]. Scientific Reports, 2013, 3: 2338. doi: 10.1038/srep02338
    [48]
    DANI K M, KU Z, UPADHYA P C, et al.Subpicosecond optical switching with a negative index metamaterial[J]. Nano Letters, 2009, 9(10): 3565-3569. doi: 10.1021/nl9017644
    [49]
    CHEN J, WANG K, LONG H, et al.Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region[J]. Nano Letters, 2018, 18(2): 1344-1350. doi: 10.1021/acs.nanolett.7b05033
    [50]
    SCHLICKRIEDE C, WATERMAN N, REINEKE B, et al.Imaging through nonlinear metalens using second harmonic generation[J]. Advanced Materials, 2018, 30(8): 1703843. doi: 10.1002/adma.201703843
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article views(3764) PDF downloads(326) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return