Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403
Citation: HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403

Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes

doi: 10.3788/CO.20191206.1403
Funds:

the National Key Research and Development Program of China 2016YFA02005003

National Natural Science Foundation of China 61274066

National Natural Science Foundation of China 61504138

National Natural Science Foundation of China 61501421

National Natural Science Foundation of China 61474115

More Information
  • Phase modulation technology is widely used in detecting the rotational signal of gyro in resonator integrated optic gyroscopes in order to improve the sensitivity and suppress noises. This paper we review various phase modulation techniques that have been proposed by many researchers in recent years. The influences of backscattering noises on the performance of RIOG are introduced firstly. Various improved phase modulation techniques are proposed by different research groups. The advantages and limitations of these modulation techniques are investigated. The modulation techniques include two broad categories:namely, single-phase modulation technique (SPMT) and double phase modulation technique (DPMT). Compared with SPMT, DPMT can further improve accuracy and system robustness of RIOGs. High precision sideband locking technology is the latest emerging modulation method that is expected to fulfill performance requirements in the fields of aerospace and defense.

     

  • loading
  • [1]
    SAGNAC G. L'éther lumineux démontré par léffet du vent relatif d'éther dans un interférométre en rotation uniforme[J]. Comptes Rendus de l'Académie des Sciences, 1913, 157:708-719.
    [2]
    SUZUKI K, TAKIGUCHI K, HOTATE K. Integrated optical ring-resonator gyro using a silica planar lightwave circuit[J]. Proceedings of SPIE, 1999, 3541:66-75. doi: 10.1117/12.339114
    [3]
    FEI Y, YANG T SH, LI ZH F, et al.. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. Journal of Semiconductors, 2017, 38(4):044009. doi: 10.1088/1674-4926/38/4/044009
    [4]
    DELL'OLIO F, TATOLI T, CIMINELLI C, et al.. Recent advances in miniaturized optical gyroscopes[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9:14013. doi: 10.2971/jeos.2014.14013
    [5]
    SANDERS S J, STRANDJORD L K, MEAD D. Fiber optic gyro technology trends-a Honeywell perspective[C]. Proceedings of 2002 15th Optical Fiber Sensors Conference Technical Digest, IEEE, 2002: 5-8.
    [6]
    FREIER L, LAZNICKA O, GILMORE J, et al.. A fiber-optic rotation sensor for NASA space missions[J]. AAS Guidance and Control, 1992, 91.
    [7]
    FENG L SH, LEI M, LIU H L, et al.. Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology[J]. Applied Optics, 2013, 52(8):1668-1675. doi: 10.1364/AO.52.001668
    [8]
    CIMINELLI C, DELL'OLIO F, ARMENISE M N, et al.. High performance InP ring resonator for new generation monolithically integrated optical gyroscopes[J]. Optics Express, 2013, 21(1):556-564. doi: 10.1364/OE.21.000556
    [9]
    YU X H, MA H L, JIN ZH H, et al.. Resonator fiber optic gyroscope with an all digitalized system[C]. Proceedings of 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, IEEE, 2010: 815-818.
    [10]
    IWATSUKI K, HOTATE K, HIGASHIGUCHI M. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro[J]. Applied Optics, 1984, 23(21):3916-3924. doi: 10.1364/AO.23.003916
    [11]
    MA H L, HE Z Y, HOTATE K. Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression[J]. Proceedings of SPIE, 2009, 7503:750353. doi: 10.1117/12.835029
    [12]
    SUZUKI K, TAKIGUCHI K, HOTATE K. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J]. Journal of Lightwave Technology, 2000, 18(1):66-72. doi: 10.1109/50.818908
    [13]
    MA H L, ZHANG X L, JIN ZH H, et al.. Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique[J]. Optical Engineering, 2006, 45(8):080506. doi: 10.1117/1.2280645
    [14]
    ZHANG X L, MA H L, JIN ZH H, et al.. Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique[J]. Applied Optics, 2006, 45(31):7961-7965. doi: 10.1364/AO.45.007961
    [15]
    YAN Y CH, WANG L L, MA H L, et al.. Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro[J]. Proceedings of SPIE, 2015, 9655:96550I. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215031297
    [16]
    YING D Q, MA H L, JIN ZH H. Resonator fiber optic gyro using the triangle wave phase modulation technique[J]. Optics Communications, 2008, 281(4):580-586. doi: 10.1016/j.optcom.2007.10.012
    [17]
    YU H, ZHANG C, FENG L, et al.. Limitation of rotation sensing in IORG by Rayleigh backscattering noise[J]. Europhysics Letters, 2011, 95(6):64001. doi: 10.1209/0295-5075/95/64001
    [18]
    WANG J J, FENG L SH, TANG Y CH, et al.. Resonator integrated optic gyro employing trapezoidal phase modulation technique[J]. Optics Letters, 2015, 40(2):155-158. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234104520/
    [19]
    MAO H, MA H L, JIN ZH H, et al.. Resonator micro-optic gyroscope based on the double phase modulation technique[C]. Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications, IEEE, 2010: 1-2.
    [20]
    ZHI Y ZH, FENG L SH, WANG J J, et al.. Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation[J]. Applied Optics, 2015, 54(1):114. doi: 10.1364/AO.54.000114
    [21]
    MAO H, MA H L, JIN ZH H. Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique[J]. Optics Express, 2011, 19(5):4632-4643. doi: 10.1364/OE.19.004632
    [22]
    WANG J J, FENG L SH, WANG Q W, et al.. Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method[J]. Optics Letters, 2016, 41(7):1586-1589. doi: 10.1364/OL.41.001586
    [23]
    MA H L, ZHANG J J, WANG L L, et al.. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation[J]. Optics Express, 2015, 23(12):15088-15097. doi: 10.1364/OE.23.015088
    [24]
    JIN ZH H, YU X H, MA H L. Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation[J]. Optics Express, 2013, 21(22):26578-26588. doi: 10.1364/OE.21.026578
    [25]
    LEFÈVRE H C. The fiber-optic gyroscope:challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6):828-832. doi: 10.1016/j.yofte.2013.08.007
    [26]
    DELL'OLIO F, INDIVERI F, CIMINELLI C, et al.. Optoelectronic gyroscope based on a high-Q InGaAsP/InP ring resonator: preliminary results of the system test[C]. Proceedings of 2014 16th International Conference on Transparent Optical Networks, IEEE, 2014: 1-4.
    [27]
    LIU N, NIU Y X, FENG L SH, et al.. Suppression of backscattering induced noise by the sideband locking technique in a resonant fiber optic gyroscope[J]. Chinese Optics Letters, 2018, 16(1):010608. doi: 10.3788/COL201816.010608
    [28]
    LEFÈVRE H C. The Fiber-optic Gyroscope[M]. London:Artech House, 2014.
    [29]
    TENCH R, DELAVAUX J M, TZENG L, et al.. Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5μm[J]. Journal of Lightwave Technology, 1987, 5(4):492-501. doi: 10.1109/JLT.1987.1075535
    [30]
    FEI Y, HE Y M, LI ZH F, et al.. Backreflections in resonant micro-optic gyroscope[J]. Journal of Physics Communications, 2018, 2(9):095010. doi: 10.1088/2399-6528/aad065
    [31]
    YAN Y CH, CHEN Y, MA H L, et al.. Polarization-fluctuation induced drift in resonator micro optic gyro[C]. Proceedings of 2012 Asia Communications and Photonics Conference, IEEE, 2012: 1-3.
    [32]
    FEI Y, HE Y M, WANG X D, et al.. Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro[J]. Chinese Physics B, 2018, 27(8):084213. doi: 10.1088/1674-1056/27/8/084213
    [33]
    LI X H, ZHANG J J, MA H L, et al.. Test and analysis of the optical kerr-effect in resonant micro-optic gyros[J]. IEEE Photonics Journal, 2014, 6(5):6601007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfedeed3687d3cd0d90139057c8c5beb
    [34]
    MA H L, YAN Y CH, CHEN Y, et al.. Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation[J]. IEEE Photonics Journal, 2012, 4(6):2372-2381. doi: 10.1109/JPHOT.2012.2232908
    [35]
    MA H L, CHANG X, YANG ZH H, et al.. Full investigation of the backscattering in resonator fiber optic gyro[J]. Optics Communications, 2011, 284(19):4480-4484. doi: 10.1016/j.optcom.2011.06.018
    [36]
    KAISER T J, CARDARELLI D, WALSH J G. Experimental developments in the RFOG[J]. Proceedings of SPIE, 1991, 1367:121-126. doi: 10.1117/12.24736
    [37]
    WANG X J, KISHI M, HE Z Y, et al.. Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation[J]. Proceedings of SPIE, 2012, 8351:83513G. doi: 10.1117/12.914427
    [38]
    MA H L, HE Z Y, HOTATE K Z. Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro[J]. Journal of Lightwave Technology, 2011, 29(1):85-90. doi: 10.1109/JLT.2010.2092751
    [39]
    LEI M, FENG L SH, ZHI Y ZH. Impact of inflection points on the performance of resonator integrated optic gyro[J]. Optik, 2014, 125(1):508-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa343d2a6490fcd203ab718f2a0c07f5
    [40]
    WANG J J, FENG L SH, WANG Q W, et al.. Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro[J]. Optics Express, 2016, 24(5):5463-5468. doi: 10.1364/OE.24.005463
    [41]
    EZEKIEL S, BALSAMO S R. Passive ring resonator laser gyroscope[J]. Applied Physics Letters, 1997, 30(9):478-480. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC027669952/
    [42]
    LEI M, FENG L SH, ZHI Y ZH. Sensitivity improvement of resonator integrated optic gyroscope by double-electrode phase modulation[J]. Applied Optics, 2013, 52(30):7214-7219. doi: 10.1364/AO.52.007214
    [43]
    MOELLER R P, BURNS W K. 1.06-μm all-fiber gyroscope with noise subtraction[J]. Optics Letters, 1991, 16(23):1902-1904. doi: 10.1364/OL.16.001902
    [44]
    郭丽君, 宁亮, 孔梅, 等.谐振式集成光学陀螺解调特性分析[J].中国光学, 2014, 7(4):651-656. http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml

    GUO L J, NING L, KONG M, et al.. Demodulation characteristics of resonator integrated optical gyro[J]. Chinese Optics, 2014, 7(4):651-656.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml
    [45]
    JIN ZH H, ZHANG G H, MAO H, et al.. Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor[J]. Optics Communications, 012, 285(5):645-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef431c61e998320eb58cd7e231dd1ea7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(1643) PDF downloads(74) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return