Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403
Citation: HE Yu-ming, YANG Fu-hua, YAN Wei, LI Zhao-feng. Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes[J]. Chinese Optics, 2019, 12(6): 1403-1417. doi: 10.3788/CO.20191206.1403

Phase modulation techniques for suppressing backscattering noise in resonator integrated optic gyroscopes

doi: 10.3788/CO.20191206.1403

the National Key Research and Development Program of China 2016YFA02005003

National Natural Science Foundation of China 61274066

National Natural Science Foundation of China 61504138

National Natural Science Foundation of China 61501421

National Natural Science Foundation of China 61474115

More Information
  • Phase modulation technology is widely used in detecting the rotational signal of gyro in resonator integrated optic gyroscopes in order to improve the sensitivity and suppress noises. This paper we review various phase modulation techniques that have been proposed by many researchers in recent years. The influences of backscattering noises on the performance of RIOG are introduced firstly. Various improved phase modulation techniques are proposed by different research groups. The advantages and limitations of these modulation techniques are investigated. The modulation techniques include two broad categories:namely, single-phase modulation technique (SPMT) and double phase modulation technique (DPMT). Compared with SPMT, DPMT can further improve accuracy and system robustness of RIOGs. High precision sideband locking technology is the latest emerging modulation method that is expected to fulfill performance requirements in the fields of aerospace and defense.


  • loading
  • [1]
    SAGNAC G. L'éther lumineux démontré par léffet du vent relatif d'éther dans un interférométre en rotation uniforme[J]. Comptes Rendus de l'Académie des Sciences, 1913, 157:708-719.
    SUZUKI K, TAKIGUCHI K, HOTATE K. Integrated optical ring-resonator gyro using a silica planar lightwave circuit[J]. Proceedings of SPIE, 1999, 3541:66-75. doi: 10.1117/12.339114
    FEI Y, YANG T SH, LI ZH F, et al.. Design of the low-loss waveguide coil for interferometric integrated optic gyroscopes[J]. Journal of Semiconductors, 2017, 38(4):044009. doi: 10.1088/1674-4926/38/4/044009
    DELL'OLIO F, TATOLI T, CIMINELLI C, et al.. Recent advances in miniaturized optical gyroscopes[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9:14013. doi: 10.2971/jeos.2014.14013
    SANDERS S J, STRANDJORD L K, MEAD D. Fiber optic gyro technology trends-a Honeywell perspective[C]. Proceedings of 2002 15th Optical Fiber Sensors Conference Technical Digest, IEEE, 2002: 5-8.
    FREIER L, LAZNICKA O, GILMORE J, et al.. A fiber-optic rotation sensor for NASA space missions[J]. AAS Guidance and Control, 1992, 91.
    FENG L SH, LEI M, LIU H L, et al.. Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology[J]. Applied Optics, 2013, 52(8):1668-1675. doi: 10.1364/AO.52.001668
    CIMINELLI C, DELL'OLIO F, ARMENISE M N, et al.. High performance InP ring resonator for new generation monolithically integrated optical gyroscopes[J]. Optics Express, 2013, 21(1):556-564. doi: 10.1364/OE.21.000556
    YU X H, MA H L, JIN ZH H, et al.. Resonator fiber optic gyroscope with an all digitalized system[C]. Proceedings of 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, IEEE, 2010: 815-818.
    IWATSUKI K, HOTATE K, HIGASHIGUCHI M. Effect of Rayleigh backscattering in an optical passive ring-resonator gyro[J]. Applied Optics, 1984, 23(21):3916-3924. doi: 10.1364/AO.23.003916
    MA H L, HE Z Y, HOTATE K. Sensitivity improvement of waveguide-type optical passive ring resonator gyroscope by carrier suppression[J]. Proceedings of SPIE, 2009, 7503:750353. doi: 10.1117/12.835029
    SUZUKI K, TAKIGUCHI K, HOTATE K. Monolithically integrated resonator microoptic gyro on silica planar lightwave circuit[J]. Journal of Lightwave Technology, 2000, 18(1):66-72. doi: 10.1109/50.818908
    MA H L, ZHANG X L, JIN ZH H, et al.. Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique[J]. Optical Engineering, 2006, 45(8):080506. doi: 10.1117/1.2280645
    ZHANG X L, MA H L, JIN ZH H, et al.. Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique[J]. Applied Optics, 2006, 45(31):7961-7965. doi: 10.1364/AO.45.007961
    YAN Y CH, WANG L L, MA H L, et al.. Hybrid air-core photonic bandgap fiber ring resonator and implications for resonant fiber optic gyro[J]. Proceedings of SPIE, 2015, 9655:96550I. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215031297
    YING D Q, MA H L, JIN ZH H. Resonator fiber optic gyro using the triangle wave phase modulation technique[J]. Optics Communications, 2008, 281(4):580-586. doi: 10.1016/j.optcom.2007.10.012
    YU H, ZHANG C, FENG L, et al.. Limitation of rotation sensing in IORG by Rayleigh backscattering noise[J]. Europhysics Letters, 2011, 95(6):64001. doi: 10.1209/0295-5075/95/64001
    WANG J J, FENG L SH, TANG Y CH, et al.. Resonator integrated optic gyro employing trapezoidal phase modulation technique[J]. Optics Letters, 2015, 40(2):155-158. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234104520/
    MAO H, MA H L, JIN ZH H, et al.. Resonator micro-optic gyroscope based on the double phase modulation technique[C]. Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications, IEEE, 2010: 1-2.
    ZHI Y ZH, FENG L SH, WANG J J, et al.. Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation[J]. Applied Optics, 2015, 54(1):114. doi: 10.1364/AO.54.000114
    MAO H, MA H L, JIN ZH H. Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique[J]. Optics Express, 2011, 19(5):4632-4643. doi: 10.1364/OE.19.004632
    WANG J J, FENG L SH, WANG Q W, et al.. Suppression of backreflection error in resonator integrated optic gyro by the phase difference traversal method[J]. Optics Letters, 2016, 41(7):1586-1589. doi: 10.1364/OL.41.001586
    MA H L, ZHANG J J, WANG L L, et al.. Double closed-loop resonant micro optic gyro using hybrid digital phase modulation[J]. Optics Express, 2015, 23(12):15088-15097. doi: 10.1364/OE.23.015088
    JIN ZH H, YU X H, MA H L. Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation[J]. Optics Express, 2013, 21(22):26578-26588. doi: 10.1364/OE.21.026578
    LEFÈVRE H C. The fiber-optic gyroscope:challenges to become the ultimate rotation-sensing technology[J]. Optical Fiber Technology, 2013, 19(6):828-832. doi: 10.1016/j.yofte.2013.08.007
    DELL'OLIO F, INDIVERI F, CIMINELLI C, et al.. Optoelectronic gyroscope based on a high-Q InGaAsP/InP ring resonator: preliminary results of the system test[C]. Proceedings of 2014 16th International Conference on Transparent Optical Networks, IEEE, 2014: 1-4.
    LIU N, NIU Y X, FENG L SH, et al.. Suppression of backscattering induced noise by the sideband locking technique in a resonant fiber optic gyroscope[J]. Chinese Optics Letters, 2018, 16(1):010608. doi: 10.3788/COL201816.010608
    LEFÈVRE H C. The Fiber-optic Gyroscope[M]. London:Artech House, 2014.
    TENCH R, DELAVAUX J M, TZENG L, et al.. Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5μm[J]. Journal of Lightwave Technology, 1987, 5(4):492-501. doi: 10.1109/JLT.1987.1075535
    FEI Y, HE Y M, LI ZH F, et al.. Backreflections in resonant micro-optic gyroscope[J]. Journal of Physics Communications, 2018, 2(9):095010. doi: 10.1088/2399-6528/aad065
    YAN Y CH, CHEN Y, MA H L, et al.. Polarization-fluctuation induced drift in resonator micro optic gyro[C]. Proceedings of 2012 Asia Communications and Photonics Conference, IEEE, 2012: 1-3.
    FEI Y, HE Y M, WANG X D, et al.. Analysis of resonance asymmetry phenomenon in resonator integrated optic gyro[J]. Chinese Physics B, 2018, 27(8):084213. doi: 10.1088/1674-1056/27/8/084213
    LI X H, ZHANG J J, MA H L, et al.. Test and analysis of the optical kerr-effect in resonant micro-optic gyros[J]. IEEE Photonics Journal, 2014, 6(5):6601007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dfedeed3687d3cd0d90139057c8c5beb
    MA H L, YAN Y CH, CHEN Y, et al.. Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation[J]. IEEE Photonics Journal, 2012, 4(6):2372-2381. doi: 10.1109/JPHOT.2012.2232908
    MA H L, CHANG X, YANG ZH H, et al.. Full investigation of the backscattering in resonator fiber optic gyro[J]. Optics Communications, 2011, 284(19):4480-4484. doi: 10.1016/j.optcom.2011.06.018
    KAISER T J, CARDARELLI D, WALSH J G. Experimental developments in the RFOG[J]. Proceedings of SPIE, 1991, 1367:121-126. doi: 10.1117/12.24736
    WANG X J, KISHI M, HE Z Y, et al.. Closed loop resonator fiber optic gyro with precisely controlled bipolar digital serrodyne modulation[J]. Proceedings of SPIE, 2012, 8351:83513G. doi: 10.1117/12.914427
    MA H L, HE Z Y, HOTATE K Z. Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro[J]. Journal of Lightwave Technology, 2011, 29(1):85-90. doi: 10.1109/JLT.2010.2092751
    LEI M, FENG L SH, ZHI Y ZH. Impact of inflection points on the performance of resonator integrated optic gyro[J]. Optik, 2014, 125(1):508-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa343d2a6490fcd203ab718f2a0c07f5
    WANG J J, FENG L SH, WANG Q W, et al.. Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro[J]. Optics Express, 2016, 24(5):5463-5468. doi: 10.1364/OE.24.005463
    EZEKIEL S, BALSAMO S R. Passive ring resonator laser gyroscope[J]. Applied Physics Letters, 1997, 30(9):478-480. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC027669952/
    LEI M, FENG L SH, ZHI Y ZH. Sensitivity improvement of resonator integrated optic gyroscope by double-electrode phase modulation[J]. Applied Optics, 2013, 52(30):7214-7219. doi: 10.1364/AO.52.007214
    MOELLER R P, BURNS W K. 1.06-μm all-fiber gyroscope with noise subtraction[J]. Optics Letters, 1991, 16(23):1902-1904. doi: 10.1364/OL.16.001902
    郭丽君, 宁亮, 孔梅, 等.谐振式集成光学陀螺解调特性分析[J].中国光学, 2014, 7(4):651-656. http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml

    GUO L J, NING L, KONG M, et al.. Demodulation characteristics of resonator integrated optical gyro[J]. Chinese Optics, 2014, 7(4):651-656.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9148.shtml
    JIN ZH H, ZHANG G H, MAO H, et al.. Resonator micro optic gyro with double phase modulation technique using an FPGA-based digital processor[J]. Optics Communications, 012, 285(5):645-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef431c61e998320eb58cd7e231dd1ea7
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(1679) PDF downloads(79) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint