Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HUANG Chao, MA Lian-ying, ZHU Feng, AN Xiao-xia, YU Li, LIU Jing-ru. Discharge characteristics of optical pumping source by ceramic surface discharge[J]. Chinese Optics, 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321
Citation: HUANG Chao, MA Lian-ying, ZHU Feng, AN Xiao-xia, YU Li, LIU Jing-ru. Discharge characteristics of optical pumping source by ceramic surface discharge[J]. Chinese Optics, 2019, 12(6): 1321-1328. doi: 10.3788/CO.20191206.1321

Discharge characteristics of optical pumping source by ceramic surface discharge

doi: 10.3788/CO.20191206.1321
Funds:

State Key Laboratory Foundation of Laser Interaction with Matter SKLLIM1011-01

More Information
  • Corresponding author: HUANG Chao, E-mail:471356437@qq.com
  • Received Date: 05 Dec 2018
  • Rev Recd Date: 02 Feb 2019
  • Publish Date: 01 Dec 2019
  • To obtain a lifetime of surface discharge optical pumping source, the sectioned-surface discharge optical pumping source with an Al2O3 ceramic substrate is developed. Based on the discharge voltage and the discharge current waveforms of a pump source, the discharge period, the discharge channel resistance, the energy deposition efficiency and the average power density of discharge plasma are investigated in detail under different conditions. The discharge period, the discharge channel resistance and the energy deposition efficiency increase with an increase in the length of the discharge gap and the pressure of the mixed gas. A trend toward the opposite is observed as the charging voltage increases. The average power density of discharge plasma mainly depends on the charging voltage and the length of the discharge gap but is almost unaffected by the gas pressure. Normally, the energy deposition efficiency can be more than 82% and the average power density of discharge plasma is 9.36 MW/cm when the charging voltage is 26.8 kV, the discharge gap length is 8 cm, and the gas pressure is 100 kPa. The experimental results show that Al2O3 ceramic surface discharge optical pump source performs good discharge characteristics, and has a higher average discharge plasma power density than Teflon surface discharge optical pumping source under the same conditions, which results in a better vacuum ultraviolet radiation intensity and a brightness temperature above 23 kK. An Al2O3 ceramic surface discharge optical pumping source is appropriate for optical pumping XeF2 to obtain a high power XeF(C-A) blue-green laser.

     

  • loading
  • [1]
    王永强, 仲钊, 谢军, 等.温度对不同老化程度的绝缘纸板沿面放电的影响[J].高电压技术, 2017, 43(8):2724-2732. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201708038

    WANG Y Q, ZHONG ZH, XIE J, et al. Influence of temperature on the surface discharge of insulating paperboard with different aging degree[J]. High Voltage Engineering, 2017, 43(8):2724-2732.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdyjs201708038
    [2]
    赵玉顺, 张桦, 陈维江, 等.雷电冲击电压下环氧树脂基频率选择超材料沿面放电特性[J].电工技术学报, 2017, 32(20):10-19. http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201720002

    ZHAO Y SH, ZHANG H, CHEN W J, et al.. Analysis of surface discharge characteristics of a frequency selective metamaterial based on epoxy resin under lightning pulse voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(20):10-19.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dgjsxb201720002
    [3]
    郑重, 于志诚, 杜赫, 等.液氮温区超导复合绝缘材料沿面放电特性[J].中国电力, 2018, 51(3):69-73.

    ZHENG ZH, YU ZH H, DU H, et al.. Characteristics of surface discharge on the interface of solid insulation and liquid nitrogen in superconducting applications[J]. Electric Power, 2018, 51(3):69-73.(in Chinese)
    [4]
    许芝龙, 许健芳.附着金属颗粒的绝缘介质沿面放电微观发展过程[J].绝缘材料, 2018, 51(7):65-71, 76.

    XU ZH L, XU J F. Micro development process of surface discharge of insulation medium with metal particles[J]. Insulating Materials, 2018, 51(7):65-71, 76.(in Chinese)
    [5]
    QI H H, WANG H Y, SUN P, et al.. A comparative study of volume discharge versus surface discharge generated by nanosecond pulses in airflow with wire-to-wire electrode[C]. Proceedings of the 13th AsiaPacific Conference on Plasma Science and Technology, Professional Committee of Plasma Science and Technology, China Mechanics Society, Donghua University, 2016.
    [6]
    周织建, 聂伟荣, 洪肇斌.共面薄膜电极表面放电冷却技术[J].光学 精密工程, 2018, 26(4):866-874. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804016

    ZHOU ZH J, NIE W R, HONG ZH B. Electrocooling technology based on surface discharge of thin coplanar flat electrodes[J]. Opt. Precision Eng., 2018, 26(4):866-874.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201804016
    [7]
    潘春青, 岳田利, 王铁成, 等.气体沿面放电低温等离子体对扩展青霉孢子杀灭效果[J].食品科学, 2017, 38(21):1-7. doi: 10.7506/spkx1002-6630-201721001

    PAN CH Q, YUE T L, WANG T CH, et al.. Killing effect of low-temperature plasma generated by gas phase surface discharge on Penicillium expansum spores[J]. Food Science, 2017, 38(21):1-7.(in Chinese) doi: 10.7506/spkx1002-6630-201721001
    [8]
    孙路石, 曾曌, 袁旭东, 等.沿面型介质阻挡放电氧化NO的试验研究[J].华中科技大学学报(自然科学版), 2017, 45(4):68-72. http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201704013

    SUN L SH, ZENG ZH, YUAN X D, et al.. Experimental research on NO oxidization by surface dielectric barrier discharge[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2017, 45(4):68-72.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hzlgdxxb201704013
    [9]
    CAO Y, LI J, JIANG N, et al.. The structure optimization of gas-phase surface discharge and its application for dye degradation[J]. Plasma Science and Technology, 2018, 20(5):054018. doi: 10.1088/2058-6272/aaa3d5
    [10]
    ARTEM'EV M Y, BASHKIN A S, MIKHEEV L D, et al.. NF3/H2 and ClF5/H2 chemical HF lasers initiated by radiation from a surface discharge[J]. Proceedings of SPIE, 1998, 3574:385-396. doi: 10.1117/12.334461
    [11]
    YU L, MA L Y, YI A P, et al.. An optically pumped XeF(C-A) laser with repetitive rate of 10 Hz[J]. Review of Scientific Instruments, 2012, 83(1):013107. doi: 10.1063/1.3677847
    [12]
    YU L, ZHU F, SHEN Y L, et al.. A narrow linewidth and tunable XeF(C-A) laser[J]. Laser Physics, 2013, 23(8):085006. doi: 10.1088/1054-660X/23/8/085006
    [13]
    全向前, 陈祥子, 全永前, 等.深海光学照明与成像系统分析及进展[J].中国光学, 2018, 11(2):153-165. http://www.chineseoptics.net.cn/CN/abstract/abstract9573.shtml

    QUAN X Q, CHEN X Z, QUAN Y Q, et al.. Analysis and research progress of deep-sea optical illumination and imaging system[J]. Chinese Optics, 2018, 11(2):153-165.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9573.shtml
    [14]
    BEVERLY Ⅲ R E. Electrical, gasdynamic, and radiative properties of planar surface discharges[J]. Journal of Applied Physics, 1986, 60(1):104-124. doi: 10.1063/1.337673
    [15]
    SCOTT S J. Long-life 2kHz X-ray preioniser[J]. Proceedings of SPIE, 1994, 2206:16-24. doi: 10.1117/12.184581
    [16]
    SZE R C. Large-area surface-discharge UV light source for materials processing applications[J]. Proceedings of SPIE, 1997, 2987:88-93. doi: 10.1117/12.271553
    [17]
    TUEMA F A, FOURACRE R A, MACGREGOR S J, et al.. An investigation of surface flashover across polymer and ceramic substrates[C]. Proceedings of 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, IEEE, 2000: 43-46.
    [18]
    FOURACRE R A, MACGREGOR S J, FULKER D J, et al.. Optical emission properties of pulsed surface discharges[J]. IEEE Transactions on Plasma Science, 2002, 30(5):1961-1966. doi: 10.1109/TPS.2002.806630
    [19]
    KNECHT B A, FRASER R D, WHEELER D J, et al.. Optical pumping of the XeF(C→A) and iodine 1.315-μm lasers by a compact surface discharge system[J]. Optical Engineering, 2003, 42(12):3612-3621. doi: 10.1117/1.1624849
    [20]
    易爱平.多通道表面放电光泵浦源实验研究[D].长沙: 国防科技大学, 2002.

    YI A P. Experimental study on optical pumping source with multichannel surface discharge[D]. Changsha: National University of Defense Technology, 2002.(in Chinese)
    [21]
    于力.光化学激励大功率重复频率XeF(C-A)激光研究[D].西安: 西北核技术研究所, 2007.

    YU L. Study on the high power photochemical XeF(C-A) laser with repetition mode[D]. Xi'an: Northwest Institute of Nuclear Technology, 2007.(in Chinese)
    [22]
    黄超, 刘晶儒, 于力, 等.用于XeF蓝绿激光器的表面放电光泵浦源[J].强激光与粒子束, 2015, 27(8):081010. http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201508010

    HUANG CH, LIU J R, YU L, et al.. Surface discharge optical pumping source for XeF blue-green laser[J]. High Power Laser and Particle Beams, 2015, 27(8):081010.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/qjgylzs201508010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views(1296) PDF downloads(35) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return