Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HUANG He, LI Xin-rui, SONG Jing, WANG Hui-feng, RU Feng, SHENG Guang-feng. A traffic image dehaze method based on adaptive transmittance estimation with multi-scale window[J]. Chinese Optics, 2019, 12(6): 1311-1320. doi: 10.3788/CO.20191206.1311
Citation: HUANG He, LI Xin-rui, SONG Jing, WANG Hui-feng, RU Feng, SHENG Guang-feng. A traffic image dehaze method based on adaptive transmittance estimation with multi-scale window[J]. Chinese Optics, 2019, 12(6): 1311-1320. doi: 10.3788/CO.20191206.1311

A traffic image dehaze method based on adaptive transmittance estimation with multi-scale window

doi: 10.3788/CO.20191206.1311
Funds:

National Key Research and Development Program of China 2018YFB1600600

"13th Five-Year" Equipment Pre-research Fund 61403120105

Natural Science Basic Research Plan in Shaanxi Province 2019JM-611

Shaanxi Province Innovative Talent Promotion Plan-Youth Science and Technology New Star Project 2019KJXX-028

Science and Technology Projects of Shaanxi Transportation Department 17-33T

Science and Technology Projects of Shaanxi Transportation Department 17-16K

the Fundamental Research Funds for the Central Universities in Chang′an University 300102328204

the Fundamental Research Funds for the Central Universities in Chang′an University 300102329401

the Fundamental Research Funds for the Central Universities in Chang′an University 300102329502

More Information
  • Corresponding author: LI Xin-rui, E-mail:1076359350@qq.com
  • Received Date: 17 Dec 2018
  • Rev Recd Date: 07 Feb 2019
  • Publish Date: 01 Dec 2019
  • Aiming at the halo effect and the color distortion of bright areas when using traditional dark priori image defogging algorithms, we propose a traffic image dehaze method based on adaptive transmittance estimation with multi-scale window in this paper. Firstly, a new 8-direction edge detection operator is used to detect abrupt changes in field depth in images. According to the dark channel prior theory and the abrupt change of field depth obtained in the previous step, a 5×5 window is used in the larger area of field depth transformation and a 15×15 window is used in the smaller area to obtain a dark primary color estimation image. At the same time, targetting the problem of inaccurate estimation of transmittance when there is a white area in the close-range region due to the dark channel priori principle, we introduce an adaptive transmittance restoration method. An edge-enhanced dark image is obtained by using a guide filter, and the texture difference between the edge-enhanced dark image and the original dark primary image is used to correct the transmittance in the close-range region, and then to complete image dehazing. The experimental results show that the halo phenomenon exists in both the bilateral filter and the gradient bilateral filter, and the color distortion is serious in the bright area containing white objects, causing the objective evaluation index to be meaningless. Compared with the guide filter, the indexes of the dehazing algorithm used in this paper show improvement, wherein the average gradient increased by 8.305%, the PSNR increased by 12.455% and the edge strength factor increased by 7.77%. The algorithm can effectively solve issues arising from the halo effect and color distortion in bright areas in restored images while providing a more effective dehazing effect.

     

  • loading
  • [1]
    SINGH D, KUMAR V. Single image haze removal using integrated dark and bright channel prior[J]. Modern Physics Letters B, 2018, 32(4):1850051. doi: 10.1142/S0217984918500513
    [2]
    FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3):72. http://d.old.wanfangdata.com.cn/Periodical/jsjyjyfz201012013
    [3]
    ZHANG Z, FENG W, WANG T, et al.. An improved aerial remote sensing image defogging method based on dark channel prior information[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS, 2017.
    [4]
    TAN K, OAKLEY J P. Enhancement of color images in poor visibility conditions[C]. Proceedings 2000 International Conference on Image Processing, IEEE, 2000: 788-791.
    [5]
    NARASIMHAN S G, NAYAR S K. Contrast restoration of weather degraded images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(6):720-724. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_429f21ea83a55d2761e1aa45a29e1537
    [6]
    LI Z G, ZHENG J H, YAO W, et al.. Single image haze removal via a simplified dark channel[C]. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2015.
    [7]
    HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1956-1963.
    [8]
    黄大荣, 方周, 赵玲.一种改进的结合边缘检测的去雾新方法[J].上海交通大学学报, 2015, 49(6):861-867. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201506021

    HUANG D R, FANG ZH, ZHAO L. An improved defogging algorithm combined with edge detection[J]. Journal of Shanghai Jiaotong University, 2015, 49(6):861-867.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201506021
    [9]
    石文轩, 詹诗萦, 李婕.一种边缘优化的暗通道去雾算法[J].计算机应用研究, 2013, 30(12):3854-3856, 3862. doi: 10.3969/j.issn.1001-3695.2013.12.088

    SHI W X, ZHAN SH Y, LI J. Dark channel prior dehazing algorithm based on edge optimization[J]. Application Research of Computers, 2013, 30(12):3854-3856, 3862.(in Chinese) doi: 10.3969/j.issn.1001-3695.2013.12.088
    [10]
    杨红, 崔艳.基于开运算暗通道和优化边界约束的图像去雾算法[J].光子学报, 2018, 47(6):238-244. http://d.old.wanfangdata.com.cn/Periodical/gzxb201806028

    YANG H, CUI Y. Image defogging algorithm based on opening dark channel and improved boundary constraint[J]. Acta Photonica Sinica, 2018, 47(6):238-244.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201806028
    [11]
    VERMA O P, PARIHAR A S. An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1):114-127. doi: 10.1109/TFUZZ.2016.2551289
    [12]
    SIDOR K, SZLACHTA A. The impact of the implementation of edge detection methods on the accuracy of automatic voltage reading[J]. Measurement Science Review, 2017, 17(2):93-99. doi: 10.1515/msr-2017-0012
    [13]
    LIU Y, CHENG M M, HU X W, et al.. Richer convolutional features for edge detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017.
    [14]
    汪贵平, 宋京, 杜晶晶, 等.基于改进梯度相似度核的交通图像去雾算法[J].中国公路学报, 2018, 31(6):264-271, 280. doi: 10.3969/j.issn.1001-7372.2018.06.013

    WANG G P, SONG J, DU J J, et al.. Haze defogging algorithm for traffic images based on improved gradient similarity kernel[J]. China Journal of Highway and Transport, 2018, 31(6):264-271, 280.(in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.013
    [15]
    黄鹤, 宋京, 郭璐, 等.基于新的中值引导滤波的交通视频去雾算法[J].西北工业大学学报, 2018, 36(3):414-419. doi: 10.3969/j.issn.1000-2758.2018.03.002

    HUANG H, SONG J, GUO L, et al.. A novel dehazing algorithm based on median guide filter for traffic video[J]. Journal of Northwestern Polytechnical University, 2018, 36(3):414-419.(in Chinese) doi: 10.3969/j.issn.1000-2758.2018.03.002
    [16]
    邓莉.针对明亮区域的自适应全局暗原色先验去雾[J].光学 精密工程, 2016, 24(4):892-901. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604026

    DENG L. Adaptive image dehazing for bright areas based on global dark channel prior[J]. Opt. Precision Eng., 2016, 24(4):892-901.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201604026
    [17]
    徐伟, 陈彦彤, 朴永杰, 等.基于吉林一号遥感图像的星载目标快速识别系统[J].光学 精密工程, 2017, 25(1):255-262. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201701032

    XU W, CHEN Y T, PIAO Y J, et al.. Target fast matching recognition of on-board system based on Jilin-1 satellite image[J]. Opt. Precision Eng., 2017, 25(1):255-262. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201701032
    [18]
    李佳童, 章毓晋.图像去雾算法的改进和主客观性能评价[J].光学 精密工程, 2017, 25(3):735-741. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703025

    LI J T, ZHANG Y J. Improvements of image haze removal algorithm and its subjective and objective performance evaluation[J]. Opt. Precision Eng., 2017, 25(3):735-741.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201703025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article views(1505) PDF downloads(52) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return