Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
TIAN Xiao, ZHANG Jun, HUANG Bao-yu, YANG Hang, XIAN Jia-yu. The integrated three dimensional optical lattice system for confining ultra-cold atoms[J]. Chinese Optics, 2019, 12(6): 1295-1302. doi: 10.3788/CO.20191206.1295
Citation: TIAN Xiao, ZHANG Jun, HUANG Bao-yu, YANG Hang, XIAN Jia-yu. The integrated three dimensional optical lattice system for confining ultra-cold atoms[J]. Chinese Optics, 2019, 12(6): 1295-1302. doi: 10.3788/CO.20191206.1295

The integrated three dimensional optical lattice system for confining ultra-cold atoms

doi: 10.3788/CO.20191206.1295
Funds:

Natural Science Basic Research Program of Shaanxi 2019JQ-914

Doctoral and Senior Talent Research Fund of Xi′an Aeronautical University 206011625

College Students′ Innovation and Entrepreneurship Training Program of Xi′an Aeronautical University DCX2019042

More Information
  • Corresponding author: TIAN Xiao, E-mail:daisy_1005@126.com.cn
  • Received Date: 10 Jan 2019
  • Rev Recd Date: 06 Mar 2019
  • Publish Date: 01 Dec 2019
  • In order to optimize the trapping potential well of the lattice, an integrated three-dimensional(3-D) optical lattice system with cavity enhancement effect is proposed. Based on the theory of laser-atom interaction, the potential well for loading alkaline-earth metal 88Sr atoms is studied. The effects of confinement ability on cold atoms is obtained by discussing the Lamb-Dicke parameter η. When η < < 1, atoms are confined tightly in the well and the Rabi radiations associated with the carrier transition have maximum values. The sideband transition is suppressed. Three pairs of lasers are placed orthogonally to each other to form a three-dimensional optical lattice by making an incident laser propagate among mirrors set at several special angles. Results show that the input laser power required by this 3-D optical lattice system is only 1/15 of the power of the traditional system and the maximum depth of the potential well is 86 μK. The trapping frequency along the axis of the lattice is about 158 kHz and the corresponding parameter is only 0.17. It is also shown that the polarization characteristics of the lattice laser have a significant influence on the stability of the potential well distribution. This negative influence of instability induced by interference can be eliminated by perpendicular polarization between beams in each dimension. The integrated three-dimensional optical lattice can reduce the interference to the atom itself and is conducive to the precise detection of the trapped atom. This study provides a theoretical reference for efficiently loading cold Strontium atoms and other alkaline earth metal atoms into the optical lattice in experiments.

     

  • loading
  • [1]
    GREINER M, MANDEL O, ESSLINGER T, et al.. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms[J]. Nature, 2002, 415(6867):39-44. doi: 10.1038/415039a
    [2]
    DUTTA S, MUELLER E J. Variational study of polarons and bipolarons in a one-dimensional Bose lattice gas in both the superfluid and the Mott-insulator regimes[J]. Physical Review A, 2013, 88(5):053601. doi: 10.1103/PhysRevA.88.053601
    [3]
    GERTIS J, FRIESDORF M, RIOFR O C A, et al.. Estimating strong correlations in optical lattices[J]. Physical Review A, 2016, 94(5):053628. doi: 10.1103/PhysRevA.94.053628
    [4]
    高静.可调谐锁模光纤激光器泵浦的超连续谱光源[J].光学 精密工程, 2018, 26(1):25-30. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004

    GAO J. Tunable mode-locked fiber laser pumped supercontinuum source[J]. Opt. Precision Eng., 2018, 26(1):25-30.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201801004
    [5]
    郭红英, 王召巴.基于光纤光栅的高压固体压力传感器研究[J].分析化学, 2017, 45(7):980-986. http://d.old.wanfangdata.com.cn/Periodical/fxhx201707007

    GUO H Y, WANG ZH B. Research on solid pressure sensor for high-pressure measurement based on fiber bragg grating[J]. Chinese J. Anal. Chem., 2017, 45(7):980-986. http://d.old.wanfangdata.com.cn/Periodical/fxhx201707007
    [6]
    WEI CH H, KUHN C C N. Laser cooling of rubidium atoms in a 2D optical lattice[J]. Journal of Modern Optics, 2018, 65(10):1226-1234. doi: 10.1080/09500340.2018.1429684
    [7]
    赵旭, 赵兴东, 景辉.利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学Casimir效应[J].物理学报, 2013, 62(6):060302. http://d.old.wanfangdata.com.cn/Periodical/wlxb201306007

    ZHAO X, ZHAO X D, JING H. Simulating dynamical Casimir effect at finite temperature with magnons in spin chain within an optical lattice[J]. Acta Physica Sinica, 2013, 62(6):060302.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201306007
    [8]
    任洁, 刘辉, 卢本全, 等.锶原子光钟跃迁谱线探测中的程序控制[J].光学 精密工程, 2016, 24(1):50-58. http://www.cnki.com.cn/Article/CJFDTotal-GXJM201601008.htm

    REN J, LIU H, LU B Q, et al.. Program control in transition observation of strontium optical lattice clock[J]. Opt. Precision Eng., 2016, 24(1):50-58.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GXJM201601008.htm
    [9]
    KATORI H, TAKAMOTO M, PALCHIKOV V G, et al.. Ultrastable optical clock with neutral atoms in an engineered light shift trap[J]. Physical Review Letters, 2003, 91(17):173005. doi: 10.1103/PhysRevLett.91.173005
    [10]
    TAKAMOTO M, HONG F L, KATORI H, et al.. An optical lattice clock[J]. Nature, 2005, 435(7040):321-324. doi: 10.1038/nature03541
    [11]
    WANG Q, LIN Y G, MENG F, et al.. Magic wavelength measurement of the 87Sr optical lattice clock at NIM[J]. Chinese Physics Letters, 2016, 33(10):103201. doi: 10.1088/0256-307X/33/10/103201
    [12]
    魏春华, 颜树华, 杨俊, 等.基于87Rb原子的大失谐光晶格的设计与操控[J].物理学报, 2017, 66(1):010701. http://d.old.wanfangdata.com.cn/Periodical/wlxb201701004

    WEI CH H, YAN SH H, YANG J, et al.. Design and control of large-detuned optical lattice based on87Rb atoms[J]. Acta Physica Sinica, 2017, 66(1):010701.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201701004
    [13]
    DEMARCO B, LANNERT C, VISHVESHWARA S, et al.. Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice[J]. Physical Review A, 2005, 71(6):063601. doi: 10.1103/PhysRevA.71.063601
    [14]
    RAUSCHENBEUTEL A, SCHADWINKEL H, GOMER V, et al.. Standing light fields for cold atoms with intrinsically stable and variable time phases[J]. Optics Communications, 1998, 148(1-3):45-48. doi: 10.1016/S0030-4018(97)00669-X
    [15]
    贺茂勇, 逯海, 金章东, 等.人牙齿中锶的特效树脂分离及其同位素测定[J].分析化学, 2012, 40(7):1109-1113. http://d.old.wanfangdata.com.cn/Periodical/fxhx201207023

    HE M Y, LU H, JIN ZH D, et al.. Separation and isotopic measurement of Sr in tooth samples using selective specific resins[J]. Chinese Journal of Analytical Chemistry, 2012, 40(7):1109-1113.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201207023
    [16]
    WINELAND D J, DRULLINGER R E, WALLS F L. Radiation-Pressure cooling of bound resonant absorbers[J]. Physical Review Letters, 1978, 40(25):1639-1642. doi: 10.1103/PhysRevLett.40.1639
    [17]
    AKATSUKA T, TAKAMOTO M, KATORI H. Optical lattice clocks with non-interacting bosons and fermions[J]. Nature Physics, 2008, 4(12):954-959. doi: 10.1038/nphys1108
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(1562) PDF downloads(48) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return