Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
YU Hai-yang, TU Lang-ping, ZHANG You-lin, ZHAO Hui-ying, KONG Xiang-gui. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J]. Chinese Optics, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288
Citation: YU Hai-yang, TU Lang-ping, ZHANG You-lin, ZHAO Hui-ying, KONG Xiang-gui. Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents[J]. Chinese Optics, 2019, 12(6): 1288-1294. doi: 10.3788/CO.20191206.1288

Quantitative analysis of the surface quenching effect of lanthanide-doped upconversion nanoparticles in solvents

doi: 10.3788/CO.20191206.1288
Funds:

National Natural Science Foundation of China 11874354

National Natural Science Foundation of China 51772122

National Natural Science Foundation of China 11874355

More Information
  • Corresponding author: KONG Xiang-gui, E-mail:xgkong14@ciomp.ac.cn
  • Received Date: 29 Jan 2019
  • Rev Recd Date: 03 Feb 2019
  • Publish Date: 01 Dec 2019
  • Laser-induced upconversion luminescence of lanthanide-doped nanoparticles has attracted great interest from researchers for many years due to its unique optical properties. The influence of solvents on the surfaces of these nanoparticles is a common problem in practical applications of these materials. However, traditional analysis methods are incapable of quantifying the influences of solvents. In response to this difficulty, we used a Monte Carlo simulation to reconstruct macroscopic upconversion luminescence at the microscopic level of ion-ion interaction. Then, we succeeded in obtaining quantified analysis results of the surface effects from four different aqueous solvents, which were water, methanol, ethanol and N, N-dimethylformamide(DMF). Both steady-state and dynamic spectra results show that the surface quenching rate of the upconversion nanoparticles in the highest to the lowest order of the four solvents are water, methanol, ethanol and DMF, which is attributed to the hydroxyl group and its activity. The computational simulation results show that the surface quenching rates of the Yb3+ excited state(2F5/2) in NaYF4:20%Yb, 2%Er upconversion nanoparticles in the four solvents are 2.5×104 s-1(DMF), 1×105 s-1(methanol and ethanol) and 5×105 s-1(water), which confirms our hypothesis.

     

  • loading
  • [1]
    ZHOU L, WANG R, YAO CH, et al.. Single-band upconversion nanoprobes for multiplexed simultaneous in situ molecular mapping of cancer biomarkers[J]. Nature Communications, 2015, 6:6938. doi: 10.1038/ncomms7938
    [2]
    李巧凤, 任舒悦, 王瑜, 等.基于AuNP-AuNP-UCNP三联体结构的传感体系高效检测环境雌激素双酚A和雌二醇[J].分析化学, 2018, 46(4):486-492. http://d.old.wanfangdata.com.cn/Periodical/fxhx201804004

    LI Q F, REN SH Y, WANG Y, et al.. Efficient detection of environmental estrogens bisphenol A and estradiol by sensing system based on AuNP-AuNP-UCNP triple structure[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4):486-492.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201804004
    [3]
    李慧, 杨魁胜, 祁宁, 等.Yb3+/Er3+掺杂氟氧化物微晶玻璃的制备与发光性能[J].中国光学, 2011, 4(6):672-677. doi: 10.3969/j.issn.2095-1531.2011.06.022

    LI H, YANG K SH, QI N, et al.. Preparation and luminescence properties of Yb3+/Er3+-codoped oxyfluoride glass ceramics[J]. Chinese Optics, 2011, 4(6):672-677.(in Chinese) doi: 10.3969/j.issn.2095-1531.2011.06.022
    [4]
    LIU X W, WANG Y, LI X Y, et al.. Binary temporal upconversion codes of Mn2+-activated nanoparticles for multilevel anti-counterfeiting[J]. Nature Communications, 2017, 8:899. doi: 10.1038/s41467-017-00916-7
    [5]
    华修德, 尤红杰, 杨家川, 等.基于上转换荧光标记的氯噻啉免疫层析方法研究[J].分析化学, 2018, 46(3):413-421. http://d.old.wanfangdata.com.cn/Periodical/fxhx201803017

    HUA X D, YOU H J, YANG J CH, et al.. Immunochromatographic assay for detection of imidaclothiz based on upconversion fluorescence labeling[J]. Chinese Journal of Analytical Chemistry, 2018, 46(3):413-421.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201803017
    [6]
    CHEN H D, LEE S M, MONTENEGRO A, et al.. Plasmonically enhanced spectral upconversion for improved performance of GaAs solar cells under nonconcentrated solar illumination[J]. ACS Photonics, 2018, 5(11):4289-4295. doi: 10.1021/acsphotonics.8b01245
    [7]
    张磊, 范亚蕾, 黄月霞, 等.Al3+, Ba2+掺杂YF3:Er3+, Yb3+的上转换发光性能[J].发光学报, 2018, 39(11):1533-1541.

    ZHANG L, FAN Y L, HUANG Y X, et al.. Upconversion luminescence properties of YF3:Er3+, Yb3+doped with Al3+, Ba2+[J]. Chinese Journal of Luminescence, 2018, 39(11):1533-1541.(in Chinese)
    [8]
    LU Y Q, ZHAO J B, ZHANG R, et al.. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 2014, 8(1):32-36. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232009653/
    [9]
    LIU Y J, LU Y Q, YANG X S, et al.. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543(7644):229-233. doi: 10.1038/nature21366
    [10]
    韩玉平, 谌林, 李贞, 等.基于上转换荧光纳米颗粒-聚多巴胺纳米颗粒的生物传感器检测癌胚抗原[J].分析化学, 2018, 46(8):1178-1185. http://d.old.wanfangdata.com.cn/Periodical/fxhx201808004

    HAN Y P, SHEN L, LI ZH, et al.. An aptasensor based on upconversion nanoparticles-polydopamine nanoparticles nanosystem for detection of carcinoembryonic antigen[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8):1178-1185.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fxhx201808004
    [11]
    李洋洋, 李大光, 张丹, 等.小尺寸NaLuF4:Yb3+/Tm3+纳米晶的生长及上转换发光[J].发光学报, 2018, 39(6):764-770. http://d.old.wanfangdata.com.cn/Periodical/fgxb201806002

    LI Y Y, LI D G, ZHANG D, et al.. Growth process and upconversion luminescence of NaLuF4:Yb3+/Tm3+ nanocrystals[J]. Chinese Journal of Luminescence, 2018, 39(6):764-770.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201806002
    [12]
    JOHNSON N J J, HE SH, DIAO SH, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J]. Journal of the American Chemical Society, 2017, 139(8):3275-3282. doi: 10.1021/jacs.7b00223
    [13]
    CHEN Q SH, XIE X J, HUANG B L, et al.. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping[J]. Angewandte Chemie International Edition, 2017, 56(26):7605-7609. doi: 10.1002/anie.201703012
    [14]
    HE SH, JOHNSON N J J, HUU V A N, et al.. Simultaneous enhancement of photoluminescence, MRI relaxivity, and CT contrast by tuning the interfacial layer of lanthanide heteroepitaxial nanoparticles[J]. Nano Letters, 2017, 17(8):4873-4880. doi: 10.1021/acs.nanolett.7b01753
    [15]
    ZUO J, LI Q Q, XUE B, et al.. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure[J]. Nanoscale, 2017, 9(23):7941-7946. doi: 10.1039/C7NR01403A
    [16]
    FISCHER S, BRONSTEIN N D, SWABECK J K, et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J]. Nano Letters, 2016, 16(11):7241-7247. doi: 10.1021/acs.nanolett.6b03683
    [17]
    ZUO J, SUN D P, TU L P, et al.. Precisely tailoring upconversion dynamics via energy migration in core-shell nanostructures[J]. Angewandte Chemie International Edition, 2018, 57(12):3054-3058. doi: 10.1002/anie.201711606
    [18]
    QIAN H SH, ZHANG Y. Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence[J]. Langmuir, 2008, 24(21):12123-12125. doi: 10.1021/la802343f
    [19]
    RABOUW F T, PRINS P T, VILLANUEVA-DELGADO P, et al.. Quenching pathways in NaYF4:Er3+, Yb3+ upconversion nanocrystals[J]. ACS Nano, 2018, 12(5):4812-4823. doi: 10.1021/acsnano.8b01545
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1237) PDF downloads(56) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return