Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
HUANG Xiang, LIN Si-ying, GU Dan-dan, BU Zhen-xiang, YI Wei-jin, XIE Pei-qin, WANG Ling-yun. Review on progress of variable-focus liquid lens[J]. Chinese Optics, 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179
Citation: HUANG Xiang, LIN Si-ying, GU Dan-dan, BU Zhen-xiang, YI Wei-jin, XIE Pei-qin, WANG Ling-yun. Review on progress of variable-focus liquid lens[J]. Chinese Optics, 2019, 12(6): 1179-1194. doi: 10.3788/CO.20191206.1179

Review on progress of variable-focus liquid lens

doi: 10.3788/CO.20191206.1179
Funds:

Fujian Health and Education Joint Tackling Plan WKJ2016-2-21

More Information
  • Corresponding author: WANG Ling-yun, E-mail:wangly@xmu.edu.cn
  • Received Date: 18 Jan 2019
  • Rev Recd Date: 04 Mar 2019
  • Publish Date: 01 Dec 2019
  • Compared with the traditional mechanical zoom lens, the variable-focus liquid lens has a smaller lens, faster response time, lower cost and higher integration capabilities. These lenses are widely used in image acquisition, target tracking and feature recognition. The performance and applications of liquid lenses are determined by the focal length adjustment method. This paper summarizes the progress of liquid crystals, dielectrophoresis, electrochemistry, electrowetting principle-based function control variable-focus lenses, electrostatic force, electromagnetic force, pressure regulation, and environmental-response-technology-based mechanical driven variable-focus lenses. The integrated applications of variable-focus liquid lenses in optofluidic chips are introduced. Also, the major obstacles and the settlement are described. Furthermore, the development potential and future research direction of the variable-focus liquid lens are also predicted and summarized.

     

  • loading
  • [1]
    顾寄南, 尚正阳, 唐仕喜, 等.当前智能制造若干关键技术综述[J].机械设计与制造工程, 2017, 46(9):11-15. doi: 10.3969/j.issn.2095-509X.2017.09.002

    GU J N, SHANG ZH Y, TANG SH X, et al.. The symposium on some key technologies of intelligent manufacturing[J]. Machine Design and Manufacturing Engineering, 2017, 46(9):11-15.(in Chinese) doi: 10.3969/j.issn.2095-509X.2017.09.002
    [2]
    阮晋蒙.机器视觉:让中国制造2025"看"得更远[J].新经济导刊, 2017(z1):80-83. http://d.old.wanfangdata.com.cn/Periodical/yygx200605025

    RUAN J M. Machine vision:let made in China 2025 "see" farther[J]. New Economy Weekly, 2017(z1):80-83.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx200605025
    [3]
    王耀南, 陈铁健, 贺振东, 等.智能制造装备视觉检测控制方法综述[J].控制理论与应用, 2015, 32(3):273-286. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001

    WANG Y N, CHEN T J, HE ZH D, et al.. Review on the machine vision measurement and control technology for intelligent manufacturing equipment[J]. Control Theory & Applications, 2015, 32(3):273-286.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201503001
    [4]
    SUN J W, MENG Y, TAN J Y, et al.. A vision-based perception framework for outdoor navigation tasks applicable to legged robots[C]. 2017 Chinese Automation Congress, IEEE, 2017: 2894-2899.
    [5]
    ZHANG H, LI X L, ZHONG H, et al.. Automated machine vision system for liquid particle inspection of pharmaceutical injection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6):1278-1297. doi: 10.1109/TIM.2018.2800258
    [6]
    JOSHI K D, CHAUHAN V, SURGENOR B. A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach[J]. Journal of Intelligent Manufacturing, 2018:1-23. http://cn.bing.com/academic/profile?id=cc7d18cf9b623ee3ef57a5d6c9919d9a&encoded=0&v=paper_preview&mkt=zh-cn
    [7]
    童季刚, 廖菲, 罗良传.一种机器视觉的瓶罐缺陷检测系统设计[J].机电工程技术, 2016, 45(8):28-31. doi: 10.3969/j.issn.1009-9492.2016.08.009

    TONG J G, LIAO F, LUO L CH. Design of bottle cap encapsulation testing based on machine vision[J]. Mechanical & Electrical Engineering Technology, 2016, 45(8):28-31.(in Chinese) doi: 10.3969/j.issn.1009-9492.2016.08.009
    [8]
    刘明周, 马靖, 张淼, 等.基于机器视觉的机械产品装配系统在线作业方法[J].计算机集成制造系统, 2015, 21(9):2343-2353. http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201509009

    LIU M ZH, MA J, ZHANG M, et al.. Online operation method for assembly system of mechanical products based on machine vision[J]. Computer Integrated Manufacturing Systems, 2015, 21(9):2343-2353.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsjjczzxt201509009
    [9]
    李丽丽, 熊倍华, 贾海龙.高速机器人分拣系统机器视觉技术的应用[J].装备制造技术, 2016(11):11-12, 31. doi: 10.3969/j.issn.1672-545X.2016.11.004

    LI L L, XIONG B H, JIA H L. Application of high-speed sorting systems robot machine vision technology[J]. Equipment Manufacturing Technology, 2016(11):11-12, 31.(in Chinese) doi: 10.3969/j.issn.1672-545X.2016.11.004
    [10]
    ZHONG Y H, GAO J Y, LEI Q L, et al.. A vision-based counting and recognition system for flying insects in intelligent agriculture[J]. Sensors, 2018, 18(5):1489. doi: 10.3390/s18051489
    [11]
    李铮, 戴明, 李嘉全.步进电机驱动的直线变倍成像系统研究[J].中国光学, 2018, 11(5):779-789. http://www.chineseoptics.net.cn/CN/abstract/abstract9516.shtml

    LI ZH, DAI M, LI J Q. Continuous zooming imaging system driven by stepping motors[J]. Chinese Optics, 2018, 11(5):779-789.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9516.shtml
    [12]
    王潇枫, 石岩, 庄一, 等.变焦结构光成像系统的光学设计[J].应用光学, 2018, 39(1):22-27. http://d.old.wanfangdata.com.cn/Periodical/yygx201801004

    WANG X F, SHI Y, ZHUANG Y, et al.. Optical design of zoom structured light imaging system[J]. Journal of Applied Optics, 2018, 39(1):22-27.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx201801004
    [13]
    李零印, 王一凡.液体变焦技术的发展与展望[J].中国光学, 2012, 5(6):578-582. http://www.chineseoptics.net.cn/CN/abstract/abstract8907.shtml

    LI L Y, WANG Y F. Development and prospect of varifocal-liquid technique[J]. Chinese Optics, 2012, 5(6):578-582.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8907.shtml
    [14]
    石广丰, 杨彬, 史国权, 等.高速变焦液体透镜的发展动态综述[J].红外技术, 2014, 36(10):777-781, 786. http://d.old.wanfangdata.com.cn/Periodical/hwjs201410002

    SHI G F, YANG B, SHI G Q, et al.. A review of the development of high-speed liquid lens[J]. Infrared Technology, 2014, 36(10):777-781, 786.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwjs201410002
    [15]
    贾书海, 唐振华, 董君, 等.柔性变焦透镜发展现状[J].中国光学, 2015, 8(4):535-547. http://www.chineseoptics.net.cn/CN/abstract/abstract9291.shtml

    JIA SH H, TANG ZH H, DONG J, et al.. Recent advances in flexible variable-focus lens[J]. Chinese Optics, 2015, 8(4):535-547.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9291.shtml
    [16]
    SHAHINI A, JIN H, ZHOU ZH X, et al.. Toward individually tunable compound eyes with transparent graphene electrode[J]. Bioinspiration & Biomimetics, 2017, 12(4):046002. http://cn.bing.com/academic/profile?id=034fd352a03d26640cc551b253a986f3&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    LIANG D, WANG X Y. A bio-inspired optical system with a polymer membrane and integrated structure[J]. Bioinspiration & Biomimetics, 2016, 11(6):066008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9304489
    [18]
    KONG M M, CHEN D, CHEN X, et al.. Research of the human eye model with variable-focus liquid lens[J]. Microfluidics and Nanofluidics, 2017, 21(3):40. doi: 10.1007/s10404-017-1857-z
    [19]
    CHENG Y, CAO J, MENG L T, et al.. Reducing defocus aberration of a compound and human hybrid eye using liquid lens[J]. Applied Optics, 2018, 57(7):1679-1688. doi: 10.1364/AO.57.001679
    [20]
    潘逸君, 李湘宁, 李强, 等.双液体透镜变焦系统的高斯光学分析[J].应用光学, 2016, 37(2):198-202. http://d.old.wanfangdata.com.cn/Periodical/yygx201602009

    PAN Y J, LI X N, LI Q, et al.. Gauss optical analysis of double liquid lens zoom system[J]. Journal of Applied Optics, 2016, 37(2):198-202.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yygx201602009
    [21]
    张鹰, 张新, 史广维, 等.液体透镜在变焦系统中的应用[J].中国光学, 2013, 6(1):46-56. http://www.chineseoptics.net.cn/CN/abstract/abstract8854.shtml

    ZHANG Y, ZHANG X, SHI G W, et al.. Applications of liquid lenses in zoom systems[J]. Chinese Optics, 2013, 6(1):46-56.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8854.shtml
    [22]
    BEZRUCHENKO V S, MURAVSKY A A, MURAUSKI A A, et al.. Tunable liquid crystal lens based on pretilt angle gradient alignment[J]. Molecular Crystals and Liquid Crystals, 2016, 626(1):222-228. doi: 10.1080/15421406.2015.1106890
    [23]
    LI H, PAN F, WU Y T, et al.. Improvement in imaging contrast feature of liquid crystal lens with the dopant of multi-walled carbon nanotubes[J]. Applied Optics, 2017, 56(23):6655-6662. doi: 10.1364/AO.56.006655
    [24]
    LI H, PENG J, PAN F, et al.. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes[J]. Optics Express, 2018, 26(10):12441-12454. doi: 10.1364/OE.26.012441
    [25]
    吕文明, 张红霞, 宋晓敏, 等.梯形凸起电极液晶变焦透镜[J].液晶与显示, 2018, 33(1):30-37. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801004

    LV W M, ZHANG H X, SONG X M, et al.. Tunable liquid crystal lens with raised trapezoidal electrodes[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(1):30-37.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201801004
    [26]
    GIDEN I H, ETI N, REZAEI B, et al.. Adaptive graded index photonic crystal lens design via nematic liquid crystals[J]. IEEE Journal of Quantum Electronics, 2016, 52(10):6400607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffbe87d373e872eaf73bcf1596a5e589
    [27]
    CHANG K H, VARANYTSIA A, CHIEN L C. Electrically tunable liquid crystal lens with suppressed axial chromatic aberration[J]. Applied Physics Letters, 2017, 111(3):2401-2410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=490f41f71da2c84861d17d4f5c595ade
    [28]
    DOU H, CHU F, GUO Y Q, et al.. Large aperture liquid crystal lens array using a composited alignment layer[J]. Optics Express, 2018, 26(7):9254-9262. doi: 10.1364/OE.26.009254
    [29]
    LÓPEZ C A, LEE C C, HIRSA A H. Electrochemically activated adaptive liquid lens[J]. Applied Physics Letters, 2005, 87(13):134102. doi: 10.1063/1.2058209
    [30]
    LU Y SH, TU H E, XU Y, et al.. Tunable dielectric liquid lens on flexible substrate[J]. Applied Physics Letters, 2013, 103(26):261113. doi: 10.1063/1.4858616
    [31]
    JIN B Y, REN H W, CHOI W K. Dielectric liquid lens with chevron-patterned electrode[J]. Optics Express, 2017, 25(26):32411-32419. doi: 10.1364/OE.25.032411
    [32]
    ALMOALLEM Y D, JIANG H R. Double-sided design of electrodes driving tunable dielectrophoretic miniature lens[J]. Journal of Microelectromechanical Systems, 2017, 26(5):1122-1131. doi: 10.1109/JMEMS.2017.2711966
    [33]
    LIAO K W, WANG W J, LUO R C, et al.. Development of portable microscope with tunable working distance by using dielectric liquid lens[C]. 2014 International Conference on Optical MEMS and Nanophotonics, IEEE, 2014: 153-154.
    [34]
    LI L, LIU CH, REN H W, et al.. Optical switchable electrowetting lens[J]. IEEE Photonics Technology Letters, 2016, 28(14):1505-1508. doi: 10.1109/LPT.2016.2555991
    [35]
    BERGE B, PESEUX J. Variable focal lens controlled by an external voltage:An application of electrowetting[J]. The European Physical Journal E, 2000, 3(2):159-163. doi: 10.1007/s101890070029
    [36]
    BERGE B. Liquid lens technology: principle of electrowetting based lenses and applications to imaging[C]. Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, IEEE, 2005.
    [37]
    KOPP D, BRENDER T, ZAPPE H. All-liquid dual-lens optofluidic zoom system[J]. Applied Optics, 2017, 56(13):3758-3763. doi: 10.1364/AO.56.003758
    [38]
    WEI X, KAWAMURA G, MUTO H, et al.. Fabrication on low voltage driven electrowetting liquid lens by dip coating processes[J]. Thin Solid Films, 2016, 608:16-20. doi: 10.1016/j.tsf.2016.04.006
    [39]
    LI L, WANG J H, WANG Q H, et al.. Displaceable and focus-tunable electrowetting optofluidic lens[J]. Optics Express, 2018, 26(20):25839-25848. doi: 10.1364/OE.26.025839
    [40]
    HAO CH L, LIU Y H, CHEN X M, et al.. Electrowetting on liquid-infused film(EWOLF):Complete reversibility and controlled droplet oscillation suppression for fast optical imaging[J]. Scientific Reports, 2014, 4:6846.
    [41]
    SATO S. Liquid-crystal lens-cells with variable focal length[J]. Japanese Journal of Applied Physics, 1979, 18(9):1679-1684. doi: 10.1143/JJAP.18.1679
    [42]
    NOSE T, MASUDA S, SATO S. A liquid crystal microlens with hole-patterned electrodes on both substrates[J]. Japanese Journal of Applied Physics, 1992, 31(5B):1643-1646.
    [43]
    REN H W, WU S T. Introduction to Adaptive Lenses[M]. Hoboken:Wiley, 2012:181-183.
    [44]
    HAWKINS B G, SMITH A E, SYED Y A, et al.. Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields[J]. Analytical Chemistry, 2007, 79(19):7291-7300. doi: 10.1021/ac0707277
    [45]
    韩春光, 郭隐彪.基于电润湿技术的液体微透镜研究进展[J].机械设计与制造, 2010(9):247-249. doi: 10.3969/j.issn.1001-3997.2010.09.103

    HAN CH G, GUO Y B. Current development in liquid micro-lens based on electrowetting technology[J]. Machinery Design & Manufacture, 2010(9):247-249.(in Chinese) doi: 10.3969/j.issn.1001-3997.2010.09.103
    [46]
    MUGELE F, BARET J C. Electrowetting:from basics to applications[J]. Journal of Physics:Condensed Matter, 2005, 17(28):R705-R774. doi: 10.1088/0953-8984/17/28/R01
    [47]
    POUYDEBASQUE A, BRIDOUX C, JACQUET F, et al.. Varifocal liquid lenses with integrated actuator, high focusing power and low operating voltage fabricated on 200 mm wafers[J]. Sensors and Actuators A:Physical, 2011, 172(1):280-286. doi: 10.1016/j.sna.2011.05.005
    [48]
    POUYDEBASQUE A, BOLIS S, BRIDOUX C, et al.. Process optimization and performance analysis of an electrostatically actuated varifocal liquid lens[C]. 201116th international Solid-state Sensors, Actuators and Microsystems Conference, IEEE, 2011.
    [49]
    OH S H, RHEE K, CHUNG S K. Electromagnetically driven liquid lens[J]. Sensors and Actuators A:Physical, 2016, 240:153-159. doi: 10.1016/j.sna.2016.01.048
    [50]
    LEE S W, LEE S S. Focal tunable liquid lens integrated with an electromagnetic actuator[J]. Applied Physics Letters, 2007, 90(12):121129. doi: 10.1063/1.2716213
    [51]
    CHENG H CH, XU S, LIU Y F, et al.. Adaptive mechanical-wetting lens actuated by ferrofluids[J]. Optics Communications, 2011, 284(8):2118-2121. doi: 10.1016/j.optcom.2010.12.073
    [52]
    YU H, ZHOU G, CHAU F S, et al.. Tunable electromagnetically actuated liquid-filled lens[J]. Sensors and Actuators A:Physical, 2011, 167(2):602-607. doi: 10.1016/j.sna.2011.03.005
    [53]
    XIAO W J, HARDT S. An adaptive liquid microlens driven by a ferrofluidic transducer[J]. Journal of Micromechanics and Microengineering, 2010, 20(5):055032. doi: 10.1088/0960-1317/20/5/055032
    [54]
    吴雯婷, 梁忠诚, 仉乐.可调微流控光学变焦透镜[J].发光学报, 2015, 36(6):718-723. http://d.old.wanfangdata.com.cn/Periodical/fgxb201506020

    WU W T, LIANG ZH CH, ZHANG L. Optofluidic varifocal microlens[J]. Chinese Journal of Luminescence, 2015, 36(6):718-723.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201506020
    [55]
    PATRA R, AGARWAL S, KONDARAJU S, et al.. Membrane-less variable focus liquid lens with manual actuation[J]. Optics Communications, 2017, 389:74-78. doi: 10.1016/j.optcom.2016.12.021
    [56]
    HASAN N, KIM H, MASTRANGELO C H. Large aperture tunable-focus liquid lens using shape memory alloy spring[J]. Optics Express, 2016, 24(12):13334-13342. doi: 10.1364/OE.24.013334
    [57]
    ZHAO P P, ATAMAN C, ZAPPE H. Gravity-immune liquid-filled tunable lens with reduced spherical aberration[J]. Applied Optics, 2016, 55(28):7816-7823. doi: 10.1364/AO.55.007816
    [58]
    LIANG D, LIANG D T, WANG X Y, et al.. Flexible fluidic lens with polymer membrane and multi-flow structure[J]. Optics Communications, 2018, 421:7-13. doi: 10.1016/j.optcom.2018.03.062
    [59]
    MALYUK A Y, IVANOVA N A. Varifocal liquid lens actuated by laser-induced thermal Marangoni forces[J]. Applied Physics Letters, 2018, 112(10):103701. doi: 10.1063/1.5023222
    [60]
    SHIMIZU Y, KOYAMA D, FUKUI M, et al.. Ultrasound liquid crystal lens[J]. Applied Physics Letters, 2018, 112(16):161104. doi: 10.1063/1.5027131
    [61]
    LIU H L, SHI Y, LIANG L, et al.. A liquid thermal gradient refractive index lens and using it to trap single living cell in flowing environments[J]. Lab on a Chip, 2017, 17(7):1280-1286. doi: 10.1039/C7LC00078B
    [62]
    LIANG L, ZHU X Q, LIU H L, et al.. A switchable 3D liquid-liquid biconvex lens with enhanced resolution using Dean flow[J]. Lab on a Chip, 2017, 17(19):3258-3263. doi: 10.1039/C7LC00598A
    [63]
    WEE D, HWANG S H, SONG Y S, et al.. Tunable optofluidic birefringent lens[J]. Soft Matter, 2016, 12(17) 3868-3876. doi: 10.1039/C5SM02782A
    [64]
    SONG CH L, LUONG T D, KONG T F, et al.. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens[J]. Optics Letters, 2011, 36(5):657-659. doi: 10.1364/OL.36.000657
    [65]
    CHEN Q M, LI T G, ZHU Y J, et al.. Dielectrophoresis-actuated in-plane optofluidic lens with tunability of focal length from negative to positive[J]. Optics Express, 2018, 26(6):6532-6541. doi: 10.1364/OE.26.006532
    [66]
    CHEN Q M, LI T H, LI ZH H, et al.. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex[J]. Lab on a Chip, 2018, 18(24):3849-3854. doi: 10.1039/C8LC00999F
    [67]
    CHEN Q M, LI T H, LI ZH H, et al.. Optofluidic tunable lenses for in-plane light manipulation[J]. Micromachines, 2018, 9(3):97. doi: 10.3390/mi9030097
    [68]
    闵伶俐, 陈松月, 盛智芝, 等.仿生微流控的发展与应用[J].物理学报, 2016, 65(17):178301. doi: 10.7498/aps.65.178301

    MIN L L, CHEN S Y, SHENG ZH ZH, et al.. Development and application of bio-inspired and biomimetic microfluidics[J]. Acta Physica Sinica, 2016, 65(17):178301.(in Chinese) doi: 10.7498/aps.65.178301
    [69]
    YE M, WANG B, SATO S. Realization of liquid crystal lens of large aperture and low driving voltages using thin layer of weakly conductive material[J]. Optics Express, 2008, 16(6):4302-4308. doi: 10.1364/OE.16.004302
    [70]
    BEECKMAN J, YANG T H, NYS I, et al.. Multi-electrode tunable liquid crystal lenses with one lithography step[J]. Optics Letters, 2018, 43(2):271-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f6ab91091a7ada0f1cd67d0388cdd83
    [71]
    胡水兰, 彭润玲, 李一凡, 等.双层介电薄膜结构双液体变焦透镜的研究[J].光子学报, 2014, 43(2):0223003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201402012

    HU SH L, PENG R L, LI Y F, et al.. Research on the double-liquid lens with double-layer dielectric films[J]. Acta Photonica Sinica, 2014, 43(2):0223003.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201402012
    [72]
    魏茂炜, 彭润玲, 汤征洋, 等.低压双液体变焦透镜的理论及工艺研究[J].光子学报, 2015, 44(5):36-40. http://d.old.wanfangdata.com.cn/Periodical/gzxb201505007

    WEI M W, PENG R L, TANG ZH Y, et al.. Study on theory and technology of low voltage variable-focus double liquid lens[J]. Acta Photonica Sinica, 2015, 44(5):36-40.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201505007
    [73]
    LEE J, KIM J, KIM D, et al.. Low voltage electrowetting lenticular lens by using multilayer dielectric structure[J]. Proceedings of SPIE, 2017, 10116:1011609. http://cn.bing.com/academic/profile?id=01f7efa0bdddfd1424fd6ce0729614f6&encoded=0&v=paper_preview&mkt=zh-cn
    [74]
    SUN W, YANG F Q. Evaporation of a volatile liquid lens on the surface of an immiscible liquid[J]. Langmuir, 2016, 32(24):6058-6067. doi: 10.1021/acs.langmuir.6b01471
    [75]
    HU X D, ZHANG SH G, LIU Y, et al.. Electrowetting based infrared lens using ionic liquids[J]. Applied Physics Letters, 2011, 99(21):213505. doi: 10.1063/1.3663633
    [76]
    BAE J W, SHIN E J, JEONG J, et al.. High-performance PVC gel for adaptive micro-lenses with variable focal length[J]. Scientific Reports, 2017, 7(1):2068. doi: 10.1038/s41598-017-02324-9
    [77]
    SHI L, YANG R S, LU SH Y, et al.. Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency[J]. NPG Asia Materials, 2018, 10(8):821-826. doi: 10.1038/s41427-018-0077-7
    [78]
    WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-323. doi: 10.1038/s41565-017-0052-4
    [79]
    SHE A, ZHANG SH Y, SHIAN S, et al.. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2):eaap9957. doi: 10.1126/sciadv.aap9957
    [80]
    WATSON A M, DEASE K, TERRAB S, et al.. Focus-tunable low-power electrowetting lenses with thin parylene films[J]. Applied Optics, 2015, 54(20):6224-6229. doi: 10.1364/AO.54.006224
    [81]
    VAFAEI S, PODOWSKI M Z. Theoretical analysis on the effect of liquid droplet geometry on contact angle[J]. Nuclear Engineering and Design, 2005, 235(10-12):1293-1301. doi: 10.1016/j.nucengdes.2005.02.026
    [82]
    REN H W, XU S, WU S T. Effects of gravity on the shape of liquid droplets[J]. Optics Communications, 2010, 283(17):3255-3258. doi: 10.1016/j.optcom.2010.04.045
    [83]
    LI L, WANG Q H, JIANG W. Liquid lens with double tunable surfaces for large power tunability and improved optical performance[J]. Journal of Optics, 2011, 13(11):115503. doi: 10.1088/2040-8978/13/11/115503
    [84]
    ZHANG W, LIU P F, WEI X N, et al.. The analysis of the wavefront aberration caused by the gravity of the tunable-focus liquid-filled membrane lens[J]. Proceedings of SPIE, 2010, 7849:78491W. doi: 10.1117/12.869866
    [85]
    POKORN P, MEJKAL F, KULMON P, et al.. Calculation of nonlinearly deformed membrane shape of liquid lens caused by uniform pressure[J]. Applied Optics, 2017, 56(21):5939-5947. doi: 10.1364/AO.56.005939
    [86]
    DING Z Q, WANG CH H, HU ZH X, et al.. Surface profiling of an aspherical liquid lens with a varied thickness membrane[J]. Optics Express, 2017, 25(4):3122-3132. doi: 10.1364/OE.25.003122
    [87]
    朱凌峰, 孔梅梅, 宋驰, 等.电润湿双液体透镜的界面面型分析[J].光电工程, 2016, 43(12):65-71. doi: 10.3969/j.issn.1003-501X.2016.12.011

    ZHU L F, KONG M M, SONG CH, et al.. Analysis on the interface shape of double liquid lens based on electro-wetting technology[J]. Opto-Electronic Engineering, 2016, 43(12):65-71.(in Chinese) doi: 10.3969/j.issn.1003-501X.2016.12.011
    [88]
    ZOHRABI M, CORMACK R H, MCCULLOUGH C, et al.. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices[J]. Optics Express, 2017, 25(25):31451-31461. doi: 10.1364/OE.25.031451
    [89]
    MISHRA K, MURADE C, CARREEL B, et al.. Optofluidic lens with tunable focal length and asphericity[J]. Scientific Reports, 2014, 4:6378. http://cn.bing.com/academic/profile?id=22af7772312360fd77f20793ddc4a5ff&encoded=0&v=paper_preview&mkt=zh-cn
    [90]
    BEGEL L, GALSTIAN T. Liquid crystal lens with corrected wavefront asymmetry[J]. Applied Optics, 2018, 57(18):5072-5078. doi: 10.1364/AO.57.005072
    [91]
    郭鑫, 张薇, 速晋辉, 等.可调焦胶囊内窥镜光学系统设计[J].光子学报, 2015, 44(5):179-183. http://d.old.wanfangdata.com.cn/Periodical/gzxb201505031

    GUO X, ZHANG W, SU J H, et al.. Design of a focus-tunable capsule endoscope system[J]. Acta Photonica Sinica, 2015, 44(5):179-183.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201505031
    [92]
    XIONG K D, YANG S H, LI X W, et al.. Autofocusing optical-resolution photoacoustic endoscopy[J]. Optics Letters, 2018, 43(8):1846-1849. doi: 10.1364/OL.43.001846
    [93]
    张祥翔.基于液体透镜的显微镜自动调焦技术[J].光电工程, 2015, 42(10):37-42. doi: 10.3969/j.issn.1003-501X.2015.10.007

    ZHANG X X. Autofocus technology based on liquid lens in microscopic imaging system[J]. Opto-Electronic Engineering, 2015, 42(10):37-42.(in Chinese) doi: 10.3969/j.issn.1003-501X.2015.10.007
    [94]
    LI L, YUAN R Y, WANG J H, et al.. Electrically optofluidic zoom system with a large zoom range and high-resolution image[J]. Optics Express, 2017, 25(19):22280-22291. doi: 10.1364/OE.25.022280
    [95]
    REZA S A, RIZA N A. A liquid lens-based broadband variable fiber optical attenuator[J]. Optics Communications, 2009, 282(7):1298-1303. doi: 10.1016/j.optcom.2008.12.029
    [96]
    AMIRSOLAIMANI B, PEYMAN G, SCHWIEGERLING J, et al.. A new low-cost, compact, auto-phoropter for refractive assessment in developing countries[J]. Scientific Reports, 2017, 7(1):13990. doi: 10.1038/s41598-017-14507-5
    [97]
    XU CH L, ZHAO W CH, HU J H, et al.. Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J]. Fuel, 2017, 196:550-563. doi: 10.1016/j.fuel.2017.01.115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(3116) PDF downloads(303) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return