Volume 12 Issue 6
Dec.  2019
Turn off MathJax
Article Contents
LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155
Citation: LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155

Research progresses of planar super-oscillatory lenses for practical applications

doi: 10.3788/CO.20191206.1155

National Natural Science Foundation of China 51622509

the Joint Fund for the Equipment Pre-research of Space Science and Technology 6141B06240205

the Strategic Initiative Project 

More Information
  • Corresponding author: YU Yi-ting, E-mail:yyt@nwpu.edu.cn
  • Received Date: 29 Jan 2019
  • Rev Recd Date: 06 Mar 2019
  • Publish Date: 01 Dec 2019
  • Due to the diffraction limit, it is difficult to achieve far-field super-resolution focusing and imaging for traditional optical systems. The appearance of planar superlenses based on the super-oscillation principle provides a possible solution to the problem. It can achieve far-field super-resolution focus without using evanescent waves. By precisely adjusting the diffraction and interference effects among the diffractive elements, electric field oscillation that is higher than the highest spatial frequency of the system can be measured in the local area of the focal plane, and thus the transverse and axial sizes of the diffractive focal spot can be precisely controlled. Compared with conventional optical lenses, planar Super-Oscillatory Lenses(SOLs) hold advantages for their arbitrary control over the optical field, large degree of freedom in design and easy integration with optical systems. Due to the above-mentioned reasons, SOLs have attracted extensive attention from researchers in the fields of diffractive optics and micro-nano optics. In this paper, concerning practical applications, the research state-of-the-art and application scenarios of planar SOLs are presented and discussed. Finally, the system's problems and its corresponding solutions are also described.


  • loading
  • [1]
    YAN B, WANG Z B, PARKER A L, et al.. Superlensing microscope objective lens[J]. Applied Optics, 2017, 56(11):3142-3147. doi: 10.1364/AO.56.003142
    SRITURAVANICH W, PAN L, WANG Y, et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12):733-737. doi: 10.1038/nnano.2008.303
    NI X J, ISHII S, KILDISHEV A V, et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72.
    HU J T, LIU CH H, REN X CH, et al.. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano, 2016, 10(11):10275-10282. doi: 10.1021/acsnano.6b05855
    WILLIAMS C, MONTELONGO Y, WILKINSON T D. Plasmonic metalens for narrowband dual-focus imaging[J]. Advanced Optical Materials, 2017, 5(24):1700811. doi: 10.1002/adom.201700811
    ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[C]. Proceedings of Bristol Naturalists' Society, Williams & Northgate, 1874: 200-261.
    LORD RAYLEIGH F R S. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310):81-93. doi: 10.1080/14786447408640996
    LI L, GUO W, YAN Y ZH, et al.. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light:Science & Applications, 2013, 2(9):e104. http://cn.bing.com/academic/profile?id=da2755c7a3a9ac952a47ba2b689ccf87&encoded=0&v=paper_preview&mkt=zh-cn
    XU J Q, TEHRANI K F, KNER P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 2015, 9(3):2917-2925. doi: 10.1021/nn506952g
    YUE F Y, ZHANG CH M, ZANG X F, et al.. High-resolution grayscale image hidden in a laser beam[J]. Light:Science & Applications, 2018, 7:17129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201801009
    ZHU X L, YAN W, LEVY U, et al.. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5):e1602487. doi: 10.1126/sciadv.1602487
    NOBUKAWA T, NOMURA T. Multilayer recording holographic data storage using a varifocal lens generated with a kinoform[J]. Optics Letters, 2015, 40(23):5419-5422. doi: 10.1364/OL.40.005419
    RAOUX S, WEłNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories[J]. Chemical Reviews, 2010, 110(1):240-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cfdec7b60ec1ecc289ccb63ec9ec4cd
    SUN J B, LITCHINITSER N M. Toward practical, subwavelength, visible-light photolithography with hyperlens[J]. ACS Nano, 2018, 12(1):542-548. doi: 10.1021/acsnano.7b07185
    WANG R, WEI J S, FAN Y T. Chalcogenide phase-change thin films used as grayscale photolithography materials[J]. Optics Express, 2014, 22(5):4973-4984. doi: 10.1364/OE.22.004973
    LUBECK E, CAI L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7):743-748. doi: 10.1038/nmeth.2069
    NÄGERL U V, SIBARITA J B. Special section guest editorial:super-resolution microscopy of neural structure and function[J]. Neurophotonics, 2016, 3(4):041801. doi: 10.1117/1.NPh.3.4.041801
    KHORASANINEJAD M, CHEN W T, ZHU A Y, et al.. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7):4595-4600. doi: 10.1021/acs.nanolett.6b01897
    ZHANG X T, YAN L SH, GUO Y H, et al.. Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination[J]. Plasmonics, 2016, 11(1):109-115. doi: 10.1007/s11468-015-0029-9
    SPEKTOR G, DAVID A, GJONAJ B, et al.. Metafocusing by a metaspiral plasmonic lens[J]. Nano Letters, 2015, 15(9):5739-5743. doi: 10.1021/acs.nanolett.5b01571
    SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1):41-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221150596/
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
    LIU ZH W, LEE H, XIONG Y, et al.. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819):1686. doi: 10.1126/science.1137368
    LIU ZH W, STEELE J M, SRITURAVANICH W, et al.. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters, 2005, 5(9):1726-1729. doi: 10.1021/nl051013j
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644
    ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186
    SUN H, ZHU Y CH, GAO B, et al.. Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses[J]. Nanoscale Research Letters, 2017, 12(1):386. doi: 10.1186/s11671-017-2154-1
    FERNANDEZ-DOMINGUEZ A I, LIU ZH W, PENDRY J B. Coherent four-fold super-resolution imaging with composite photonic plasmonic structured illumination[J]. ACS Photonics, 2015, 2(3):341-348. doi: 10.1021/ph500342g
    ELEFTHERIADES G V, MARKLEY L, WONG A M H. Sub-wavelength focusing and imaging using shifted-beam and super-oscillation antenna arrays[C]. Proceedings of 201215th International Symposium on Antenna Technology and Applied Electromagnetics, IEEE, 2012.
    WEN ZH Q, HE Y H, LI Y Y, et al.. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18):22163-22171. doi: 10.1364/OE.22.022163
    ROGERS E T F, SAVO S, LINDBERG J, et al.. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3):031108. doi: 10.1063/1.4774385
    LIU T, TAN J B, LIU J, et al.. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13):15090-15101. doi: 10.1364/OE.21.015090
    YUAN G H, ROGERS E T F, ZHELUDEV N I. Tailoring optical super-oscillations with metasurfaces[C]. Proceedings of 2016 Conference on Lasers and Electro-Optics, IEEE, 2016.
    BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A:Mathematical and General, 2006, 39(22):6965-6977. doi: 10.1088/0305-4470/39/22/011
    HUANG F M, CHEN Y F, DE ABAJO F J G, et al.. Optical super-resolution through super-oscillations[J]. Journal of Optics A:Pure and Applied Optics, 2007, 9(9):S285-S288. doi: 10.1088/1464-4258/9/9/S01
    HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3):1249-1254. doi: 10.1021/nl9002014
    ROGERS E T F, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5):432-435. doi: 10.1038/nmat3280
    HUANG K, YE H P, TENG J H, et al.. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1):152-157.
    QIN F, HUANG K, WU J F, et al.. A supercritical lens optical label-free microscopy:sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8):1602721. doi: 10.1002/adma.201602721
    POON T C. Digital Holography and Three-dimensional Display:Principles and Applications[M]. Boston:Springer, 2006.
    POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21):4612-4615. doi: 10.1364/AO.26.004612
    YUAN G H, ROGERS E T F, ROY T, et al.. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4:6333.
    QIN F, HUANG K, WU J F, et al.. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5:9977. doi: 10.1038/srep09977
    LIU T, WANG T, YANG SH M, et al.. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces[J]. Optics Communications, 2016, 372:118-122. doi: 10.1016/j.optcom.2016.04.022
    CHEN G, WU ZH X, YU A P, et al.. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7(1):4697. doi: 10.1038/s41598-017-05060-2
    ZHANG Y H, ZHONG W H, LIU D M, et al.. Creation of sub-diffraction optical needle by nonlinear super-oscillatory lens[C]. Proceedings of 2016 Conference on Lasers and Electro-optics, IEEE, 2016.
    ROY T, ROGERS E T F, YUAN G H, et al.. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23):231109. doi: 10.1063/1.4882246
    DIAO J SH, YUAN W ZH, YU Y T, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
    BERRY M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 2013, 15(4):044006. doi: 10.1088/2040-8978/15/4/044006
    CHEN W T, HORASANINEJAD M, ZHU A Y, et al.. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light:Science & Applications, 2017, 6(5):e16259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702023
    YU W T, JI Z H, DONG D SH, et al.. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1):147-152. http://cn.bing.com/academic/profile?id=bb1beab0c08b7de5e07a0e9ef8b9d4f0&encoded=0&v=paper_preview&mkt=zh-cn
    BERTHELOT J, AĆIMOVIĆ S S, JUAN M L, et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014, 9(4):295-299. doi: 10.1038/nnano.2014.24
    GAO L, SHAO L, CHEN B CH, et al.. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocols, 2014, 9(5):1083-1101. doi: 10.1038/nprot.2014.087
    LI M Y, LI W L, LI H Y, et al.. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7:1335. doi: 10.1038/s41598-017-01492-y
    DE GRACIA P, DORRONSORO C, MARCOS S. Multiple zone multifocal phase designs[J]. Optics Letters, 2013, 38(18):3526-3529. doi: 10.1364/OL.38.003526
    LALITHAMBIGAI K, ANBARASAN P M, RAJESH K B. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask[J]. Physica Scripta, 2014, 89(7):075501. doi: 10.1088/0031-8949/89/7/075501
    VALLEY P, MATHINE D L, DODGE M R, et al.. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters, 2010, 35(3):336-338. doi: 10.1364/OL.35.000336
    CHOE Y, KIM J W, SHUNG K K, et al.. Ultrasonic microparticle trapping by multi-foci Fresnel lens[C]. Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum, IEEE, 2011.
    LI W L, YU Y T, YUAN W ZH. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1):311-320. doi: 10.1039/C8NR07985D
    ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22):4716-4719. doi: 10.1364/OL.42.004716
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. doi: 10.1038/ncomms3807
    CU-NGUYEN P H, GREWE A, FEBER P, et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2015, 5(4):e16058. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602010
    ROGERS K S, BOURDAKOS K N, YUAN G H, et al.. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Optics Express, 2018, 26(7):8095-8112. doi: 10.1364/OE.26.008095
    WANG CH T, TANG D L, WANG Y Q, et al.. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5:18485. doi: 10.1038/srep18485
    HAO X, KUANG C F, WANG T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11):115707. doi: 10.1088/2040-8978/12/11/115707
    XUE Y, KUANG C F, LI SH, et al.. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Optics Express, 2012, 20(16):17653-17666. doi: 10.1364/OE.20.017653
    SINGH B K, NAGAR H, ROICHMAN Y, et al.. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams[J]. Light:Science & Applications, 2017, 6(9):e17050. http://cn.bing.com/academic/profile?id=4286a3dc25b0a109451724114634f366&encoded=0&v=paper_preview&mkt=zh-cn
    YE H P, WAN CH, HUANG K, et al.. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3):630-633. doi: 10.1364/OL.39.000630
    YU A P, CHEN G, ZHANG ZH H, et al.. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6:38859. doi: 10.1038/srep38859
    YUAN G H, VEZZOLI S, ALTUZARRA C, et al.. Quantum super-oscillation of a single photon[J]. Light:Science & Applications, 2016, 5(8):e16127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201603016
    LIU T, SHEN T, YANG SH M, et al.. Subwavelength focusing by binary multi-annular plates:design theory and experiment[J]. Journal of Optics, 2015, 17(3):035610. doi: 10.1088/2040-8978/17/3/035610
    CHEN G, WU ZH X, YU A P, et al.. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6:37776. doi: 10.1038/srep37776
    CHEN G, LI Y Y, YU A P, et al.. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6:29068. doi: 10.1038/srep29068
    HUANG K, QIN F, LIU H, et al.. Planar diffractive lenses:fundamentals, functionalities, and applications[J]. Advanced Materials, 2018, 30(26):1704556. doi: 10.1002/adma.201704556
    BERESNA M, GECEVIČIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4):783-795. doi: 10.1364/OME.1.000783
    YANG J, WANG ZH, WANG F, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    LIN H, XU Z Q, QIU CH W, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
    LIU CH H, ZHENG J J, COLBURN S, et al.. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11):6961-6966. doi: 10.1021/acs.nanolett.8b02875
    HYUN J, KIM Y T, DOH I, et al.. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range[J]. Scientific Reports, 2018, 8(1):9131. doi: 10.1038/s41598-018-27312-5
    LEGARIA S, PACHECO-PE A V, BERUETE M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics, 2018, 5(4):56. doi: 10.3390/photonics5040056
    YUAN G H, ROGERS E T F, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light:Science & Applications, 2017, 6(9):e17036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703024
    LI ZH, ZHANG T, WANG Y Q, et al.. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10):1800064. http://cn.bing.com/academic/profile?id=d07e5aa2f00ed7da4a6c6de470e0a382&encoded=0&v=paper_preview&mkt=zh-cn
    AVAYU O, ALMEIDA E, PRIOR Y, et al.. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8:14992. doi: 10.1038/ncomms14992
    ZHOU Y, KRAVCHENKO I I, WANG H, et al.. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12):7529-7537. doi: 10.1021/acs.nanolett.8b03017
    ZHAO W Q, QIU L R, FENG ZH D. Effect of fabrication errors on superresolution property of a pupil filter[J]. Optics Express, 2006, 14(16):7024-7036. doi: 10.1364/OE.14.007024
    KOSMEIER S, MAZILU M, BAUMGARTL J, et al.. Enhanced two-point resolution using optical eigenmode optimized pupil functions[J]. Journal of Optics, 2011, 13(10):105707. doi: 10.1088/2040-8978/13/10/105707
    LERMAN G M, YANAI A, LEVY U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5):2139-2143. doi: 10.1021/nl900694r
    HUANG K, SHI P, CAO G W, et al.. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6):888-890. doi: 10.1364/OL.36.000888
    LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13):2510-2512. doi: 10.1364/OL.36.002510
    YUAN G H, ROGERS E T F, ROY T, et al.. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution[J]. Optics Express, 2014, 22(6):6428-6437. doi: 10.1364/OE.22.006428
    ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6):7577-7582. doi: 10.1364/OE.21.007577
    YUAN G H, ROGERS E T F, ROY T, et al.. Plasmonic super-oscillations and sub-diffraction focusing[C]. Proceedings of 2014 CLEO, Optical Society of America, 2014: FTu2K.5.
    HUANG K, LIU H, GARCIA-VIDAL F J, et al.. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6:7059. doi: 10.1038/ncomms8059
    TANG D L, WANG CH T, ZHAO Z Y, et al.. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6):713-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/lpor.201500182
    NI H B, YUAN G H, SUN L D, et al.. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36):20117-20123. doi: 10.1039/C8RA02644K
    HAO CH L, NIE ZH Q, YE H P, et al.. Three-dimensional supercritical resolved light-induced magnetic holography[J]. Science Advances, 2017, 3(10):e1701398. doi: 10.1126/sciadv.1701398
    GONG L, LIN J, HAO CH L, et al.. Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging[J]. Optics Letters, 2018, 43(22):5615-5618. doi: 10.1364/OL.43.005615
    KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727
    ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
    WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232. doi: 10.1038/s41565-017-0052-4
    PANIAGUA-DOMINGUEZ R, YU Y F, KHAIDAROV E, et al.. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 8(3):2124-2132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c023e7de5ca32aaa7a07e33269383f59
    CHEN W T, HU A Y, SANJEEV V, et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220-226. doi: 10.1038/s41565-017-0034-6
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(2311) PDF downloads(247) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint