Citation: | LI Wen-li, YU Yi-ting. Research progresses of planar super-oscillatory lenses for practical applications[J]. Chinese Optics, 2019, 12(6): 1155-1178. doi: 10.3788/CO.20191206.1155 |
[1] |
YAN B, WANG Z B, PARKER A L, et al.. Superlensing microscope objective lens[J]. Applied Optics, 2017, 56(11):3142-3147. doi: 10.1364/AO.56.003142
|
[2] |
SRITURAVANICH W, PAN L, WANG Y, et al.. Flying plasmonic lens in the near field for high-speed nanolithography[J]. Nature Nanotechnology, 2008, 3(12):733-737. doi: 10.1038/nnano.2008.303
|
[3] |
NI X J, ISHII S, KILDISHEV A V, et al.. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science & Applications, 2013, 2(4):e72.
|
[4] |
HU J T, LIU CH H, REN X CH, et al.. Plasmonic lattice lenses for multiwavelength achromatic focusing[J]. ACS Nano, 2016, 10(11):10275-10282. doi: 10.1021/acsnano.6b05855
|
[5] |
WILLIAMS C, MONTELONGO Y, WILKINSON T D. Plasmonic metalens for narrowband dual-focus imaging[J]. Advanced Optical Materials, 2017, 5(24):1700811. doi: 10.1002/adom.201700811
|
[6] |
ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision[C]. Proceedings of Bristol Naturalists' Society, Williams & Northgate, 1874: 200-261.
|
[7] |
LORD RAYLEIGH F R S. XII. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310):81-93. doi: 10.1080/14786447408640996
|
[8] |
LI L, GUO W, YAN Y ZH, et al.. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light:Science & Applications, 2013, 2(9):e104. http://cn.bing.com/academic/profile?id=da2755c7a3a9ac952a47ba2b689ccf87&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
XU J Q, TEHRANI K F, KNER P. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy[J]. ACS Nano, 2015, 9(3):2917-2925. doi: 10.1021/nn506952g
|
[10] |
YUE F Y, ZHANG CH M, ZANG X F, et al.. High-resolution grayscale image hidden in a laser beam[J]. Light:Science & Applications, 2018, 7:17129. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201801009
|
[11] |
ZHU X L, YAN W, LEVY U, et al.. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5):e1602487. doi: 10.1126/sciadv.1602487
|
[12] |
NOBUKAWA T, NOMURA T. Multilayer recording holographic data storage using a varifocal lens generated with a kinoform[J]. Optics Letters, 2015, 40(23):5419-5422. doi: 10.1364/OL.40.005419
|
[13] |
RAOUX S, WEłNIC W, IELMINI D. Phase change materials and their application to nonvolatile memories[J]. Chemical Reviews, 2010, 110(1):240-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9cfdec7b60ec1ecc289ccb63ec9ec4cd
|
[14] |
SUN J B, LITCHINITSER N M. Toward practical, subwavelength, visible-light photolithography with hyperlens[J]. ACS Nano, 2018, 12(1):542-548. doi: 10.1021/acsnano.7b07185
|
[15] |
WANG R, WEI J S, FAN Y T. Chalcogenide phase-change thin films used as grayscale photolithography materials[J]. Optics Express, 2014, 22(5):4973-4984. doi: 10.1364/OE.22.004973
|
[16] |
LUBECK E, CAI L. Single-cell systems biology by super-resolution imaging and combinatorial labeling[J]. Nature Methods, 2012, 9(7):743-748. doi: 10.1038/nmeth.2069
|
[17] |
NÄGERL U V, SIBARITA J B. Special section guest editorial:super-resolution microscopy of neural structure and function[J]. Neurophotonics, 2016, 3(4):041801. doi: 10.1117/1.NPh.3.4.041801
|
[18] |
KHORASANINEJAD M, CHEN W T, ZHU A Y, et al.. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7):4595-4600. doi: 10.1021/acs.nanolett.6b01897
|
[19] |
ZHANG X T, YAN L SH, GUO Y H, et al.. Enhanced far-field focusing by plasmonic lens under radially polarized beam illumination[J]. Plasmonics, 2016, 11(1):109-115. doi: 10.1007/s11468-015-0029-9
|
[20] |
SPEKTOR G, DAVID A, GJONAJ B, et al.. Metafocusing by a metaspiral plasmonic lens[J]. Nano Letters, 2015, 15(9):5739-5743. doi: 10.1021/acs.nanolett.5b01571
|
[21] |
SHALAEV V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1):41-48. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0221150596/
|
[22] |
PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18):3966-3969. doi: 10.1103/PhysRevLett.85.3966
|
[23] |
LIU ZH W, LEE H, XIONG Y, et al.. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819):1686. doi: 10.1126/science.1137368
|
[24] |
LIU ZH W, STEELE J M, SRITURAVANICH W, et al.. Focusing surface plasmons with a plasmonic lens[J]. Nano Letters, 2005, 5(9):1726-1729. doi: 10.1021/nl051013j
|
[25] |
KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al.. Metalenses at visible wavelengths:Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290):1190-1194. doi: 10.1126/science.aaf6644
|
[26] |
ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
|
[27] |
ARBABI A, HORIE Y, BAGHERI M, et al.. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11):937-943. doi: 10.1038/nnano.2015.186
|
[28] |
SUN H, ZHU Y CH, GAO B, et al.. Polarization-dependent quasi-far-field superfocusing strategy of nanoring-based plasmonic lenses[J]. Nanoscale Research Letters, 2017, 12(1):386. doi: 10.1186/s11671-017-2154-1
|
[29] |
FERNANDEZ-DOMINGUEZ A I, LIU ZH W, PENDRY J B. Coherent four-fold super-resolution imaging with composite photonic plasmonic structured illumination[J]. ACS Photonics, 2015, 2(3):341-348. doi: 10.1021/ph500342g
|
[30] |
ELEFTHERIADES G V, MARKLEY L, WONG A M H. Sub-wavelength focusing and imaging using shifted-beam and super-oscillation antenna arrays[C]. Proceedings of 201215th International Symposium on Antenna Technology and Applied Electromagnetics, IEEE, 2012.
|
[31] |
WEN ZH Q, HE Y H, LI Y Y, et al.. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18):22163-22171. doi: 10.1364/OE.22.022163
|
[32] |
ROGERS E T F, SAVO S, LINDBERG J, et al.. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3):031108. doi: 10.1063/1.4774385
|
[33] |
LIU T, TAN J B, LIU J, et al.. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13):15090-15101. doi: 10.1364/OE.21.015090
|
[34] |
YUAN G H, ROGERS E T F, ZHELUDEV N I. Tailoring optical super-oscillations with metasurfaces[C]. Proceedings of 2016 Conference on Lasers and Electro-Optics, IEEE, 2016.
|
[35] |
BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A:Mathematical and General, 2006, 39(22):6965-6977. doi: 10.1088/0305-4470/39/22/011
|
[36] |
HUANG F M, CHEN Y F, DE ABAJO F J G, et al.. Optical super-resolution through super-oscillations[J]. Journal of Optics A:Pure and Applied Optics, 2007, 9(9):S285-S288. doi: 10.1088/1464-4258/9/9/S01
|
[37] |
HUANG F M, ZHELUDEV N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3):1249-1254. doi: 10.1021/nl9002014
|
[38] |
ROGERS E T F, LINDBERG J, ROY T, et al.. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5):432-435. doi: 10.1038/nmat3280
|
[39] |
HUANG K, YE H P, TENG J H, et al.. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1):152-157.
|
[40] |
QIN F, HUANG K, WU J F, et al.. A supercritical lens optical label-free microscopy:sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8):1602721. doi: 10.1002/adma.201602721
|
[41] |
POON T C. Digital Holography and Three-dimensional Display:Principles and Applications[M]. Boston:Springer, 2006.
|
[42] |
POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21):4612-4615. doi: 10.1364/AO.26.004612
|
[43] |
YUAN G H, ROGERS E T F, ROY T, et al.. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4:6333.
|
[44] |
QIN F, HUANG K, WU J F, et al.. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5:9977. doi: 10.1038/srep09977
|
[45] |
LIU T, WANG T, YANG SH M, et al.. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces[J]. Optics Communications, 2016, 372:118-122. doi: 10.1016/j.optcom.2016.04.022
|
[46] |
CHEN G, WU ZH X, YU A P, et al.. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7(1):4697. doi: 10.1038/s41598-017-05060-2
|
[47] |
ZHANG Y H, ZHONG W H, LIU D M, et al.. Creation of sub-diffraction optical needle by nonlinear super-oscillatory lens[C]. Proceedings of 2016 Conference on Lasers and Electro-optics, IEEE, 2016.
|
[48] |
ROY T, ROGERS E T F, YUAN G H, et al.. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23):231109. doi: 10.1063/1.4882246
|
[49] |
DIAO J SH, YUAN W ZH, YU Y T, et al.. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3):1924-1933. doi: 10.1364/OE.24.001924
|
[50] |
BERRY M V. A note on superoscillations associated with Bessel beams[J]. Journal of Optics, 2013, 15(4):044006. doi: 10.1088/2040-8978/15/4/044006
|
[51] |
CHEN W T, HORASANINEJAD M, ZHU A Y, et al.. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces[J]. Light:Science & Applications, 2017, 6(5):e16259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201702023
|
[52] |
YU W T, JI Z H, DONG D SH, et al.. Super-resolution deep imaging with hollow Bessel beam STED microscopy[J]. Laser & Photonics Reviews, 2016, 10(1):147-152. http://cn.bing.com/academic/profile?id=bb1beab0c08b7de5e07a0e9ef8b9d4f0&encoded=0&v=paper_preview&mkt=zh-cn
|
[53] |
BERTHELOT J, AĆIMOVIĆ S S, JUAN M L, et al.. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nature Nanotechnology, 2014, 9(4):295-299. doi: 10.1038/nnano.2014.24
|
[54] |
GAO L, SHAO L, CHEN B CH, et al.. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy[J]. Nature Protocols, 2014, 9(5):1083-1101. doi: 10.1038/nprot.2014.087
|
[55] |
LI M Y, LI W L, LI H Y, et al.. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci[J]. Scientific Reports, 2017, 7:1335. doi: 10.1038/s41598-017-01492-y
|
[56] |
DE GRACIA P, DORRONSORO C, MARCOS S. Multiple zone multifocal phase designs[J]. Optics Letters, 2013, 38(18):3526-3529. doi: 10.1364/OL.38.003526
|
[57] |
LALITHAMBIGAI K, ANBARASAN P M, RAJESH K B. Formation of multiple focal spots using a high NA lens with a complex spiral phase mask[J]. Physica Scripta, 2014, 89(7):075501. doi: 10.1088/0031-8949/89/7/075501
|
[58] |
VALLEY P, MATHINE D L, DODGE M R, et al.. Tunable-focus flat liquid-crystal diffractive lens[J]. Optics Letters, 2010, 35(3):336-338. doi: 10.1364/OL.35.000336
|
[59] |
CHOE Y, KIM J W, SHUNG K K, et al.. Ultrasonic microparticle trapping by multi-foci Fresnel lens[C]. Proceedings of 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum, IEEE, 2011.
|
[60] |
LI W L, YU Y T, YUAN W ZH. Flexible focusing pattern realization of centimeter-scale planar super-oscillatory lenses in parallel fabrication[J]. Nanoscale, 2019, 11(1):311-320. doi: 10.1039/C8NR07985D
|
[61] |
ZHOU Y, CHEN R, MA Y G. Design of optical wavelength demultiplexer based on off-axis meta-lens[J]. Optics Letters, 2017, 42(22):4716-4719. doi: 10.1364/OL.42.004716
|
[62] |
NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4:2807. doi: 10.1038/ncomms3807
|
[63] |
CU-NGUYEN P H, GREWE A, FEBER P, et al.. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2015, 5(4):e16058. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602010
|
[64] |
ROGERS K S, BOURDAKOS K N, YUAN G H, et al.. Optimising superoscillatory spots for far-field super-resolution imaging[J]. Optics Express, 2018, 26(7):8095-8112. doi: 10.1364/OE.26.008095
|
[65] |
WANG CH T, TANG D L, WANG Y Q, et al.. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5:18485. doi: 10.1038/srep18485
|
[66] |
HAO X, KUANG C F, WANG T T, et al.. Effects of polarization on the de-excitation dark focal spot in STED microscopy[J]. Journal of Optics, 2010, 12(11):115707. doi: 10.1088/2040-8978/12/11/115707
|
[67] |
XUE Y, KUANG C F, LI SH, et al.. Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy[J]. Optics Express, 2012, 20(16):17653-17666. doi: 10.1364/OE.20.017653
|
[68] |
SINGH B K, NAGAR H, ROICHMAN Y, et al.. Particle manipulation beyond the diffraction limit using structured super-oscillating light beams[J]. Light:Science & Applications, 2017, 6(9):e17050. http://cn.bing.com/academic/profile?id=4286a3dc25b0a109451724114634f366&encoded=0&v=paper_preview&mkt=zh-cn
|
[69] |
YE H P, WAN CH, HUANG K, et al.. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3):630-633. doi: 10.1364/OL.39.000630
|
[70] |
YU A P, CHEN G, ZHANG ZH H, et al.. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6:38859. doi: 10.1038/srep38859
|
[71] |
YUAN G H, VEZZOLI S, ALTUZARRA C, et al.. Quantum super-oscillation of a single photon[J]. Light:Science & Applications, 2016, 5(8):e16127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201603016
|
[72] |
LIU T, SHEN T, YANG SH M, et al.. Subwavelength focusing by binary multi-annular plates:design theory and experiment[J]. Journal of Optics, 2015, 17(3):035610. doi: 10.1088/2040-8978/17/3/035610
|
[73] |
CHEN G, WU ZH X, YU A P, et al.. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6:37776. doi: 10.1038/srep37776
|
[74] |
CHEN G, LI Y Y, YU A P, et al.. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6:29068. doi: 10.1038/srep29068
|
[75] |
HUANG K, QIN F, LIU H, et al.. Planar diffractive lenses:fundamentals, functionalities, and applications[J]. Advanced Materials, 2018, 30(26):1704556. doi: 10.1002/adma.201704556
|
[76] |
BERESNA M, GECEVIČIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4):783-795. doi: 10.1364/OME.1.000783
|
[77] |
YANG J, WANG ZH, WANG F, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
|
[78] |
LIN H, XU Z Q, QIU CH W, et al.. Atomically thin optical lenses and gratings[J]. Light:Science & Applications, 2016, 5(3):e16046. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201602004
|
[79] |
LIU CH H, ZHENG J J, COLBURN S, et al.. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11):6961-6966. doi: 10.1021/acs.nanolett.8b02875
|
[80] |
HYUN J, KIM Y T, DOH I, et al.. Realization of an ultrathin acoustic lens for subwavelength focusing in the megasonic range[J]. Scientific Reports, 2018, 8(1):9131. doi: 10.1038/s41598-018-27312-5
|
[81] |
LEGARIA S, PACHECO-PE A V, BERUETE M. Super-oscillatory metalens at terahertz for enhanced focusing with reduced side lobes[J]. Photonics, 2018, 5(4):56. doi: 10.3390/photonics5040056
|
[82] |
YUAN G H, ROGERS E T F, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light:Science & Applications, 2017, 6(9):e17036. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201703024
|
[83] |
LI ZH, ZHANG T, WANG Y Q, et al.. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10):1800064. http://cn.bing.com/academic/profile?id=d07e5aa2f00ed7da4a6c6de470e0a382&encoded=0&v=paper_preview&mkt=zh-cn
|
[84] |
AVAYU O, ALMEIDA E, PRIOR Y, et al.. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8:14992. doi: 10.1038/ncomms14992
|
[85] |
ZHOU Y, KRAVCHENKO I I, WANG H, et al.. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics[J]. Nano Letters, 2018, 18(12):7529-7537. doi: 10.1021/acs.nanolett.8b03017
|
[86] |
ZHAO W Q, QIU L R, FENG ZH D. Effect of fabrication errors on superresolution property of a pupil filter[J]. Optics Express, 2006, 14(16):7024-7036. doi: 10.1364/OE.14.007024
|
[87] |
KOSMEIER S, MAZILU M, BAUMGARTL J, et al.. Enhanced two-point resolution using optical eigenmode optimized pupil functions[J]. Journal of Optics, 2011, 13(10):105707. doi: 10.1088/2040-8978/13/10/105707
|
[88] |
LERMAN G M, YANAI A, LEVY U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5):2139-2143. doi: 10.1021/nl900694r
|
[89] |
HUANG K, SHI P, CAO G W, et al.. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6):888-890. doi: 10.1364/OL.36.000888
|
[90] |
LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13):2510-2512. doi: 10.1364/OL.36.002510
|
[91] |
YUAN G H, ROGERS E T F, ROY T, et al.. Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50nm resolution[J]. Optics Express, 2014, 22(6):6428-6437. doi: 10.1364/OE.22.006428
|
[92] |
ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6):7577-7582. doi: 10.1364/OE.21.007577
|
[93] |
YUAN G H, ROGERS E T F, ROY T, et al.. Plasmonic super-oscillations and sub-diffraction focusing[C]. Proceedings of 2014 CLEO, Optical Society of America, 2014: FTu2K.5.
|
[94] |
HUANG K, LIU H, GARCIA-VIDAL F J, et al.. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6:7059. doi: 10.1038/ncomms8059
|
[95] |
TANG D L, WANG CH T, ZHAO Z Y, et al.. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6):713-719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/lpor.201500182
|
[96] |
NI H B, YUAN G H, SUN L D, et al.. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography[J]. RSC Advances, 2018, 8(36):20117-20123. doi: 10.1039/C8RA02644K
|
[97] |
HAO CH L, NIE ZH Q, YE H P, et al.. Three-dimensional supercritical resolved light-induced magnetic holography[J]. Science Advances, 2017, 3(10):e1701398. doi: 10.1126/sciadv.1701398
|
[98] |
GONG L, LIN J, HAO CH L, et al.. Supercritical focusing coherent anti-Stokes Raman scattering microscopy for high-resolution vibrational imaging[J]. Optics Letters, 2018, 43(22):5615-5618. doi: 10.1364/OL.43.005615
|
[99] |
KHORASANINEJAD M, AIETA F, KANHAIYA P, et al.. Achromatic metasurface lens at telecommunication wavelengths[J]. Nano Letters, 2015, 15(8):5358-5362. doi: 10.1021/acs.nanolett.5b01727
|
[100] |
ARBABI E, ARBABI A, KAMALI S M, et al.. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1):812. doi: 10.1038/s41467-018-03155-6
|
[101] |
WANG SH M, WU P C, SU V C, et al.. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3):227-232. doi: 10.1038/s41565-017-0052-4
|
[102] |
PANIAGUA-DOMINGUEZ R, YU Y F, KHAIDAROV E, et al.. A metalens with a near-unity numerical aperture[J]. Nano Letters, 2018, 8(3):2124-2132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c023e7de5ca32aaa7a07e33269383f59
|
[103] |
CHEN W T, HU A Y, SANJEEV V, et al.. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3):220-226. doi: 10.1038/s41565-017-0034-6
|