Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
WANG Jian-hua, YANG Yan-xi. Double N-step phase-shifting profilometry using color-encoded grating projection[J]. Chinese Optics, 2019, 12(3): 616-627. doi: 10.3788/CO.20191203.0616
Citation: WANG Jian-hua, YANG Yan-xi. Double N-step phase-shifting profilometry using color-encoded grating projection[J]. Chinese Optics, 2019, 12(3): 616-627. doi: 10.3788/CO.20191203.0616

Double N-step phase-shifting profilometry using color-encoded grating projection

doi: 10.3788/CO.20191203.0616
Funds:

National Natural Science Foundation of China 51275405

More Information
  • Corresponding author: Yan-xi, E-mail:yangyanxi@xaut.edu.cn
  • Received Date: 06 Aug 2018
  • Rev Recd Date: 29 Sep 2018
  • Publish Date: 01 Jun 2019
  • Although double N-step phase-shifting profilometry can greatly reduce phase error caused by the non-sinusoidal nature of grating fringes, its number of the projection fringes doubles and its measurement efficiency is reduced. In this paper, a double N-step phase-shifting profilometry using color-encoded grating projection is proposed. It encodes the original phase-shifting fringes and the additional phase-shifting fringes into two colored fringes and fuses them into one color-encoded grating fringe projection. Then, the phase information of two sets of fringes is extracted from the captured color-encoded fringes. After calculating their wrapped phases, the two wrapped phases are fused to reduce phase error. In order to verify the effectivity of the proposed method, we combine the proposed method with two typical phase unwrapping algorithms to carry out experiments. The experimental results show that the proposed method can effectively reduce the phase error without adding any additional grating fringes and that its measurement efficiency is enhanced by 46%.

     

  • loading
  • [1]
    张来刚, 魏仲慧, 何昕, 等.多约束融合算法在多摄像机测量系统中的应用[J].液晶与显示, 2013, 28(4):608- 614. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201304025

    ZHANG L G, WEI ZH H, HE X, et al.. Multi-camera measurement system based on multi-constraint fusion algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4):608-614.(in China) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201304025
    [2]
    ZHONG K, LI ZH W, SHI Y SH, et al.. Fast phase measurement profilometry for arbitrary shape objects without phase unwrapping[J]. Optics and Lasers in Engineering, 2013, 51(11):1213-1222. doi: 10.1016/j.optlaseng.2013.04.016
    [3]
    王勇, 饶勤菲, 唐靖, 等.采用小波脊系数幅值导数方差质量图的相位展开法[J].光子学报, 2015, 44(2):0210001. http://d.old.wanfangdata.com.cn/Periodical/gzxb201502011

    WANG Y, RAO Q F, TANG J, et al.. Phase unwrapping algorithm based on the amplitude of wavelet ridge coefficient variance derivative quality map[J]. Acta Photonica Sinica, 2015, 44(2):0210001.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzxb201502011
    [4]
    王建华, 杨延西, 马晨.基于价值函数的二维小波变换小波脊提取算法[J].仪器仪表学报, 2017, 38(12):2915-2923. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201712005.htm

    WANG J H, YANG Y X, MA CH. Wavelet ridge extraction algorithm using a cost function in two-dimensional wavelet transform[J]. Chinese Journal of Scientific Instrument, 2017, 38(12):2915-2923.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201712005.htm
    [5]
    ZHANG S, YAU S T. High-resolution, real-time 3D absolute coordinate measurement based on a phase-shifting method[J]. Optics Express, 2006, 14(7):2644-2649. doi: 10.1364/OE.14.002644
    [6]
    GAI SH Y, DA F P. A novel phase-shifting method based on strip marker[J]. Optics and Laser in Engineering, 2010, 48(2):205-211. doi: 10.1016/j.optlaseng.2009.03.020
    [7]
    HUANG P S, ZHANG S. Fast three-step phase-shifting algorithm[J]. Applied Optics, 2006, 45(21):5086-5091. doi: 10.1364/AO.45.005086
    [8]
    TAKEDA M, MUTOH K. Fourier transform profilometry for the automatic measurement of 3-D object shapes[J]. Applied Optics, 1983, 22(24):3977-3982. doi: 10.1364/AO.22.003977
    [9]
    ABID A. Fringe pattern demodulation using the one-dimensional continuous wavelet transform: field-programmable gate array implementation[J]. Applied Optics, 2013, 52(7):1468-1471. doi: 10.1364/AO.52.001468
    [10]
    WANG ZH Y, MA J, VO M. Recent progress in two-dimensional continuous wavelet transform technique for fringe pattern analysis[J]. Optics and Lasers in Engineering, 2012, 50(8):1052-1058. doi: 10.1016/j.optlaseng.2012.01.029
    [11]
    ZHANG Z B, ZHONG J G. Applicability analysis of wavelet-transform profilometry[J]. Optics Express, 2013, 21(16):18777-18796. doi: 10.1364/OE.21.018777
    [12]
    ZHANG S, YAU S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector[J]. Applied Optics, 2007, 46(1):36-43. doi: 10.1364/AO.46.000036
    [13]
    BAKER M J, XI J, CHICHARO J F. Elimination of gamma nonlinear luminance effects for digital video projection phase measuring profilometers[C]. Proceedings of the 4th IEEE International Symposium on Electronic Design, Test and Applications, 2008: 496-501.
    [14]
    PAN B, QIAN K M, HUANG L, et al.. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letter, 2009, 34(4):416-418. doi: 10.1364/OL.34.000416
    [15]
    CAI Z W, LIU X L, LIANG H, et al.. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 2015, 23(19):25171-25181. doi: 10.1364/OE.23.025171
    [16]
    YATABE K, ISHIKAWA K, OIKAWA Y. Compensation of fringe distortion for phase-shifting three-dimensional shape measurement by inverse map estimation[J]. Applied Optics, 2016, 55(22):6017-6024. doi: 10.1364/AO.55.006017
    [17]
    ZHANG W, YU L D, LI W SH, et al.. Black-box phase error compensation for digital phase-shifting profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(10):2755-2761. doi: 10.1109/TIM.2017.2712862
    [18]
    HUANG P S, HU Q J, CHIANG F P. Double three-step phase-shifting algorithm[J]. Applied Optics, 2002, 41(22):4503-4509. doi: 10.1364/AO.41.004503
    [19]
    SU W H. Color-encoded fringe projection for 3D shape measurements[J]. Optics Express, 2007, 15(20):13167-13181. doi: 10.1364/OE.15.013167
    [20]
    JIANG CH, JIA SH H, DONG J, et al.. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects[J]. Optics Express, 2015, 23(19):24152-24162. doi: 10.1364/OE.23.024152
    [21]
    SONG L M, LI Z Y, CHEN CH M, et al. A correction method of color projection fringes in 3D contour measurement[J]. Optoelectronics Letters, 2015, 11(4):303-306. doi: 10.1007/s11801-015-5050-x
    [22]
    GOLDSTEIN R M, ZEBKER A, WERNER C A, et al.. Satelliteradar interferometry:two dimensional phase unwrapping[J]. Radio Science, 1988, 23(4):713-720. doi: 10.1029/RS023i004p00713
    [23]
    ZUO CH, HUANG L, ZHANG M L, et al.. Temporal phase unwrapping algorithms for fringe projection profilometry:a comparative review[J]. Optics and Lasers in Engineering, 2016, 85:84-103. doi: 10.1016/j.optlaseng.2016.04.022
    [24]
    NGUYEN H, NGUYEN D, WANG ZH Y, et al.. Real-time, high-accuracy 3D imaging and shape measurement[J]. Applied Optics, 2015, 54(1):A9-A17. doi: 10.1364/AO.54.0000A9
    [25]
    孙辉, 柏旭光, 孙丽娜, 等.Bayer图像色彩还原线性插值方法[J].液晶与显示, 2013, 28(3):417-423. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201303022

    SUN H, BAI X G, SUN L N, et al.. Linear interpolation of demosaicing for bayer pattern[J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(3):417-423.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yjyxs201303022
    [26]
    ZHANG ZH, TOWERS C E, TOWERS D P. Shape and color measurement of colorful objects by fringe projection[J]. Proceedings of SPIE, 2008, 7063:70630N. doi: 10.1117/12.794561
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views(2732) PDF downloads(188) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return