Citation: | LI Xiao-xiao, LI Yun-qian, WANG Xin, YANG Yan-min. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+[J]. Chinese Optics, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596 |
[1] |
ZHONG J S, CHEN D Q, PENG Y ZH, et al.. A review on nanostructured glass ceramics for promising application in optical thermometry[J]. Journal of Alloys & Compounds, 2018, 763:34-48. http://www.sciencedirect.com/science/article/pii/S0925838818320863
|
[2] |
CAO J K, HU F F, CHEN L P, et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics[J]. Journal of Alloys & Compounds, 2017, 693:326-331.
|
[3] |
WU Y F, SUO H, HE D, et al.. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Materials Research Bulletin, 2018, 106:14-18. doi: 10.1016/j.materresbull.2018.05.019
|
[4] |
TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route[J]. Chemical Engineering Journal, 2016, 297:26-34. doi: 10.1016/j.cej.2016.03.149
|
[5] |
SUN ZH, LIU G F, FU Z L, et al.. Nanostructured La2O3:Yb3+/Er3+:temperature sensing, optical heating and bio-imaging application[J]. Materials Research Bulletin, 2017, 92:39-45. doi: 10.1016/j.materresbull.2017.04.005
|
[6] |
郑龙江, 高晓阳, 徐伟, 等.Tm3+, Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性[J].发光学报, 2012, 33(9):944-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006
ZHENG L J, GAO X Y, XU W, et al.. Temperature characteristic of blue up-conversion emission in Tm3+ , Yb3+ codoped oxyfluoride glass ceramic[J]. Chinese Journal of Luminescence, 2012, 33(9):944-948.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006
|
[7] |
吴中立, 吴红梅, 姚震, 等.GdNbO4:Er3+/Yb3+荧光粉的上转换发光与温度特性[J].发光学报, 2017, 38(9):1129-1135. http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007
WU ZH L, WU H M, YAO ZH, et al.. Upconversion luminescence and temperature characteristics of GdNbO4:Er3+/Yb3+ phosphors[J]. Chinese Journal of Luminescence, 2017, 38(9):1129-1135.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007
|
[8] |
刘国锋, 付作岭.上转换纳米粒子CaF:Er3+, Yb3+的合成及其温敏特性[J].发光学报, 2017, 38(2):133-138. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm
LIU G F, FU Z L. Synthesis and temperature sensing of CaF:Er3+, Yb3+ nanoparticles with upconversion fluorescence[J]. Chinese Journal of Luminescence, 2017, 38(2):133-138.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm
|
[9] |
CAO J K, LI X M, WANG ZH X, et al.. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics[J]. Sensors & Actuators B:Chemical, 2016, 224:507-513. http://www.sciencedirect.com/science/article/pii/S0925400515305530
|
[10] |
ZHOU J J, WEN SH H, LIAO J Y, et al.. Activation of the surface dark-layer to enhance upconversion in a thermal field[J]. Nature Photonics, 2018, 12(3):154-158. doi: 10.1038/s41566-018-0108-5
|
[11] |
CHENG X R, YANG K, WANG J K, et al.. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material[J]. Optical Materials, 2016, 58:449-453. doi: 10.1016/j.optmat.2016.06.029
|
[12] |
XU W J, LI D Y, HAO H Y, et al.. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+ /Er3+ phosphor[J]. Optical Materials, 2018, 78:8-14. doi: 10.1016/j.optmat.2018.02.001
|
[13] |
HAO Y X, LV SH CH, MA ZH J, et al.. Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry[J]. RSC Advances, 2018, 8(22):12165-12172. doi: 10.1039/C8RA01245H
|
[14] |
ZHENG Y H, YOU H P, LIU K, et al.. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+[J]. Cryst.Eng.Comm., 2011, 13(8):3001-3007. doi: 10.1039/c1ce05107e
|
[15] |
TIAN Y, CHEN B J, YU H Q, et al.. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres[J]. Journal of Colloid & Interface Science, 2011, 360(2):586-592. http://www.sciencedirect.com/science/article/pii/S002197971100542X
|
[16] |
DU P, LUO L H, YU J S. Upconversion emission, cathodo luminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors[J]. Ceramics International, 2016, 42(5):5635-5641. doi: 10.1016/j.ceramint.2015.12.083
|
[17] |
XU W, ZHANG ZH G, CAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4[J]. Optics Letters, 2012, 37(23):4865-4867. doi: 10.1364/OL.37.004865
|
[18] |
YANG Y M, MI CH. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+, Er3+ Phosphor[J]. Proc. of SPIE, 2013, 9044:904408. doi: 10.1117/12.2036247
|
[19] |
ZOU Z SH, WU T, LU H, et al.. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals[J]. Rsc Advances, 2018, 8(14):7679-7686. doi: 10.1039/C8RA00190A
|
[20] |
YANG Y M, MI CH, JIAO F, et al.. A novel multifunctional upconversion phosphor: Yb3+/Er3+ codoped La2S3[J]. Journal of the American Ceramic Society, 2014, 97(6):1769-1775. doi: 10.1111/jace.12822
|
[21] |
CHEN H Y, WANG F L, MOORE T L, et al.. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications[J]. Journal of Materials Chemistry B, 2017, 5(27):5412-5424. doi: 10.1039/C7TB01289F
|
[22] |
CHEN H M, SUN X L, WANG G D, et al.. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors[J]. Materials Horizons, 2017, 4(6):1092-1101. doi: 10.1039/C7MH00442G
|
[23] |
XUE ZH L, LI X L, LI Y B, et al.. X-ray activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22132-22142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cfd6466217b6abdb5d88f9eabcd44e6
|
[24] |
MAURICE E, MONNOM G, DUSSARDIER B, et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J]. Applied Optics, 1995, 34(34):8019-8025. doi: 10.1364/AO.34.008019
|
[25] |
SHINN M D, SIBLEY W A, DREXHAGE M G, et al.. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Physical Review B, 1983, 27(11):6635-6648. doi: 10.1103/PhysRevB.27.6635
|
[26] |
WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8):4743-4756. doi: 10.1063/1.1606526
|
[27] |
MACIEL G S, MENEZES L D, GOMES A S L, et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate Glass[J]. IEEE Photonics Technology Letters, 1995, 7(12):1474-1476. doi: 10.1109/68.477287
|
[28] |
CHEN Y, CHEN G H, LIU X Y, et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass-ceramics[J]. Journal of Luminescence, 2018, 195:314-320. doi: 10.1016/j.jlumin.2017.11.049
|
[29] |
YU H, LI S, QI Y SH, et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix[J]. Journal of Luminescence, 2018, 194:433-439. doi: 10.1016/j.jlumin.2017.10.014
|
[30] |
CAI J J, WEI X T, HU F F, et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals[J]. Ceramics International, 2016, 42(12):13990-13995. doi: 10.1016/j.ceramint.2016.06.002
|
[31] |
CAO J K, CHEN W P, XU D K, et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics[J]. Journal of Luminescence, 2018, 194:219-224. doi: 10.1016/j.jlumin.2017.10.020
|
[32] |
HE D, GUO CH F, ZHOU SH SH, et al.. Synthesis and thermometric properties of shuttle-like Er3+/Yb3+ co-doped NaLa(MoO4)2 microstructures[J]. CrystEngComm, 2015, 17(40):7745-7753. doi: 10.1039/C5CE01216C
|
[33] |
JIANG SH, ZENG P, LIAO L Q, et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals[J]. Journal of Alloys and Compounds, 2014, 617:538-541. doi: 10.1016/j.jallcom.2014.08.080
|
[34] |
CHEN D Q, LIU SH, LI X Y, et al.. Gd-based oxyfluoride glass ceramics:phase transformation, optical spectroscopy and upconverting temperature sensing[J]. Journal of the European Ceramic Society, 2017, 37(13):4083-4094. doi: 10.1016/j.jeurceramsoc.2017.05.006
|
[35] |
CHEN D Q, WAN ZH Y, ZHOU Y, et al.. Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4, nanocrystals:phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior[J]. Journal of Alloys & Compounds, 2015, 638:21-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234599393/
|
[36] |
LI CH R, DONG B, LI SH F, et al.. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor[J]. Chemical Physics Letters, 2007, 443(4-6):426-429. doi: 10.1016/j.cplett.2007.06.081
|
[37] |
RAKOV N, MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders[J]. Sensors & Actuators:B. Chemical, 2012, 164(1):96-100. https://www.sciencedirect.com/science/article/pii/S0925400512001116
|