Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
LI Xiao-xiao, LI Yun-qian, WANG Xin, YANG Yan-min. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+[J]. Chinese Optics, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596
Citation: LI Xiao-xiao, LI Yun-qian, WANG Xin, YANG Yan-min. Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+[J]. Chinese Optics, 2019, 12(3): 596-605. doi: 10.3788/CO.20191203.0596

Highly sensitive down-conversion optical temperature-measurement material: NaGd(WO4)2: Yb3+/Er3+

doi: 10.3788/CO.20191203.0596
Funds:

National Natural Science Foundation of China 11474083

Natural Science Foundation of Hebei Province A2015201192

Scientific Research Project of Hebei Education Department ZD2014069

More Information
  • Corresponding author: YANG Yan-min, E-mail:mihuyym@163.com
  • Received Date: 08 Nov 2018
  • Rev Recd Date: 07 Dec 2018
  • Publish Date: 01 Jun 2019
  • The fluorescence intensity ratio(FIR) thermometry based on the measurement of luminous intensities of two thermal coupling energy levels of Er3+ provides high precision for the non-contacted thermometry due to its independency of the spectral loss and excitation intensity fluctuations. However, the common FIR technology is based on the up-conversion(UC) excitation, and its low up-conversion efficiency makes the temperature measurement inaccurate. Considering that the thermalization of population in Er3+ can be achieved by different excitation sources, we utilize the efficient down-conversion(DC) optical temperature measurement with a high-energy photon excitation. A tungstate material of NaGd(WO4)2 with high temperature sensitivity is used as the matrix material. It is found that NaGd(WO4)2 can be successfully applied for the DC thermometry, and the temperature sensitivity of Yb3+/Er3+ co-doped sample is higher than that of Er3+ single-doped one. In addition, the DC thermometry possesses higher sensitivity than UC, and the temperature sensitivity of 20%Yb3+/1%Er3+ doped sample is up to 344.6×10-4 K-1, which demonstrates that NaGd(WO4)2:Yb3+/Er3+ is an ideal temperature measuring material. More importantly, it further proves the feasibility of highly sensitive DC thermometry and opens up new prospects for the utilizations of FIR technology.

     

  • loading
  • [1]
    ZHONG J S, CHEN D Q, PENG Y ZH, et al.. A review on nanostructured glass ceramics for promising application in optical thermometry[J]. Journal of Alloys & Compounds, 2018, 763:34-48. http://www.sciencedirect.com/science/article/pii/S0925838818320863
    [2]
    CAO J K, HU F F, CHEN L P, et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics[J]. Journal of Alloys & Compounds, 2017, 693:326-331.
    [3]
    WU Y F, SUO H, HE D, et al.. Highly sensitive up-conversion optical thermometry based on Yb3+-Er3+ co-doped NaLa(MoO4)2 green phosphors[J]. Materials Research Bulletin, 2018, 106:14-18. doi: 10.1016/j.materresbull.2018.05.019
    [4]
    TIAN Y Y, TIAN Y, HUANG P, et al.. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route[J]. Chemical Engineering Journal, 2016, 297:26-34. doi: 10.1016/j.cej.2016.03.149
    [5]
    SUN ZH, LIU G F, FU Z L, et al.. Nanostructured La2O3:Yb3+/Er3+:temperature sensing, optical heating and bio-imaging application[J]. Materials Research Bulletin, 2017, 92:39-45. doi: 10.1016/j.materresbull.2017.04.005
    [6]
    郑龙江, 高晓阳, 徐伟, 等.Tm3+, Yb3+共掺微晶玻璃蓝色上转换荧光的温度特性[J].发光学报, 2012, 33(9):944-948. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006

    ZHENG L J, GAO X Y, XU W, et al.. Temperature characteristic of blue up-conversion emission in Tm3+ , Yb3+ codoped oxyfluoride glass ceramic[J]. Chinese Journal of Luminescence, 2012, 33(9):944-948.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201209006
    [7]
    吴中立, 吴红梅, 姚震, 等.GdNbO4:Er3+/Yb3+荧光粉的上转换发光与温度特性[J].发光学报, 2017, 38(9):1129-1135. http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007

    WU ZH L, WU H M, YAO ZH, et al.. Upconversion luminescence and temperature characteristics of GdNbO4:Er3+/Yb3+ phosphors[J]. Chinese Journal of Luminescence, 2017, 38(9):1129-1135.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/lzdzxb201105007
    [8]
    刘国锋, 付作岭.上转换纳米粒子CaF:Er3+, Yb3+的合成及其温敏特性[J].发光学报, 2017, 38(2):133-138. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm

    LIU G F, FU Z L. Synthesis and temperature sensing of CaF:Er3+, Yb3+ nanoparticles with upconversion fluorescence[J]. Chinese Journal of Luminescence, 2017, 38(2):133-138.(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-FGXB201702001.htm
    [9]
    CAO J K, LI X M, WANG ZH X, et al.. Optical thermometry based on up-conversion luminescence behavior of self-crystallized K3YF6:Er3+ glass ceramics[J]. Sensors & Actuators B:Chemical, 2016, 224:507-513. http://www.sciencedirect.com/science/article/pii/S0925400515305530
    [10]
    ZHOU J J, WEN SH H, LIAO J Y, et al.. Activation of the surface dark-layer to enhance upconversion in a thermal field[J]. Nature Photonics, 2018, 12(3):154-158. doi: 10.1038/s41566-018-0108-5
    [11]
    CHENG X R, YANG K, WANG J K, et al.. Up-conversion luminescence and optical temperature sensing behaviour of Yb3+/Er3+ codoped CaWO4 material[J]. Optical Materials, 2016, 58:449-453. doi: 10.1016/j.optmat.2016.06.029
    [12]
    XU W J, LI D Y, HAO H Y, et al.. Optical thermometry through infrared excited green upconversion in monoclinic phase Gd2(MoO4)3:Yb3+ /Er3+ phosphor[J]. Optical Materials, 2018, 78:8-14. doi: 10.1016/j.optmat.2018.02.001
    [13]
    HAO Y X, LV SH CH, MA ZH J, et al.. Understanding differences in Er3+-Yb3+ codoped glass and glass ceramic based on upconversion luminescence for optical thermometry[J]. RSC Advances, 2018, 8(22):12165-12172. doi: 10.1039/C8RA01245H
    [14]
    ZHENG Y H, YOU H P, LIU K, et al.. Facile selective synthesis and luminescence behavior of hierarchical NaY(WO4)2:Eu3+ and Y6WO12:Eu3+[J]. Cryst.Eng.Comm., 2011, 13(8):3001-3007. doi: 10.1039/c1ce05107e
    [15]
    TIAN Y, CHEN B J, YU H Q, et al.. Controllable synthesis and luminescent properties of three-dimensional nanostructured CaWO4:Tb3+ microspheres[J]. Journal of Colloid & Interface Science, 2011, 360(2):586-592. http://www.sciencedirect.com/science/article/pii/S002197971100542X
    [16]
    DU P, LUO L H, YU J S. Upconversion emission, cathodo luminescence and temperature sensing behaviors of Yb3+ ions sensitized NaY(WO4)2:Er3+ phosphors[J]. Ceramics International, 2016, 42(5):5635-5641. doi: 10.1016/j.ceramint.2015.12.083
    [17]
    XU W, ZHANG ZH G, CAO W W. Excellent optical thermometry based on short-wavelength upconversion emissions in Er3+/Yb3+ codoped CaWO4[J]. Optics Letters, 2012, 37(23):4865-4867. doi: 10.1364/OL.37.004865
    [18]
    YANG Y M, MI CH. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+, Er3+ Phosphor[J]. Proc. of SPIE, 2013, 9044:904408. doi: 10.1117/12.2036247
    [19]
    ZOU Z SH, WU T, LU H, et al.. Structure, luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals[J]. Rsc Advances, 2018, 8(14):7679-7686. doi: 10.1039/C8RA00190A
    [20]
    YANG Y M, MI CH, JIAO F, et al.. A novel multifunctional upconversion phosphor: Yb3+/Er3+ codoped La2S3[J]. Journal of the American Ceramic Society, 2014, 97(6):1769-1775. doi: 10.1111/jace.12822
    [21]
    CHEN H Y, WANG F L, MOORE T L, et al.. Bright X-ray and up-conversion nanophosphors annealed using encapsulated sintering agents for bioimaging applications[J]. Journal of Materials Chemistry B, 2017, 5(27):5412-5424. doi: 10.1039/C7TB01289F
    [22]
    CHEN H M, SUN X L, WANG G D, et al.. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors[J]. Materials Horizons, 2017, 4(6):1092-1101. doi: 10.1039/C7MH00442G
    [23]
    XUE ZH L, LI X L, LI Y B, et al.. X-ray activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J]. ACS Applied Materials & Interfaces, 2017, 9(27):22132-22142. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0cfd6466217b6abdb5d88f9eabcd44e6
    [24]
    MAURICE E, MONNOM G, DUSSARDIER B, et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J]. Applied Optics, 1995, 34(34):8019-8025. doi: 10.1364/AO.34.008019
    [25]
    SHINN M D, SIBLEY W A, DREXHAGE M G, et al.. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Physical Review B, 1983, 27(11):6635-6648. doi: 10.1103/PhysRevB.27.6635
    [26]
    WADE S A, COLLINS S F, BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. Journal of Applied Physics, 2003, 94(8):4743-4756. doi: 10.1063/1.1606526
    [27]
    MACIEL G S, MENEZES L D, GOMES A S L, et al.. Temperature sensor based on frequency upconversion in Er3+-doped fluoroindate Glass[J]. IEEE Photonics Technology Letters, 1995, 7(12):1474-1476. doi: 10.1109/68.477287
    [28]
    CHEN Y, CHEN G H, LIU X Y, et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass-ceramics[J]. Journal of Luminescence, 2018, 195:314-320. doi: 10.1016/j.jlumin.2017.11.049
    [29]
    YU H, LI S, QI Y SH, et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix[J]. Journal of Luminescence, 2018, 194:433-439. doi: 10.1016/j.jlumin.2017.10.014
    [30]
    CAI J J, WEI X T, HU F F, et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals[J]. Ceramics International, 2016, 42(12):13990-13995. doi: 10.1016/j.ceramint.2016.06.002
    [31]
    CAO J K, CHEN W P, XU D K, et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics[J]. Journal of Luminescence, 2018, 194:219-224. doi: 10.1016/j.jlumin.2017.10.020
    [32]
    HE D, GUO CH F, ZHOU SH SH, et al.. Synthesis and thermometric properties of shuttle-like Er3+/Yb3+ co-doped NaLa(MoO4)2 microstructures[J]. CrystEngComm, 2015, 17(40):7745-7753. doi: 10.1039/C5CE01216C
    [33]
    JIANG SH, ZENG P, LIAO L Q, et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals[J]. Journal of Alloys and Compounds, 2014, 617:538-541. doi: 10.1016/j.jallcom.2014.08.080
    [34]
    CHEN D Q, LIU SH, LI X Y, et al.. Gd-based oxyfluoride glass ceramics:phase transformation, optical spectroscopy and upconverting temperature sensing[J]. Journal of the European Ceramic Society, 2017, 37(13):4083-4094. doi: 10.1016/j.jeurceramsoc.2017.05.006
    [35]
    CHEN D Q, WAN ZH Y, ZHOU Y, et al.. Bulk glass ceramics containing Yb3+/Er3+:β-NaGdF4, nanocrystals:phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior[J]. Journal of Alloys & Compounds, 2015, 638:21-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234599393/
    [36]
    LI CH R, DONG B, LI SH F, et al.. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor[J]. Chemical Physics Letters, 2007, 443(4-6):426-429. doi: 10.1016/j.cplett.2007.06.081
    [37]
    RAKOV N, MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders[J]. Sensors & Actuators:B. Chemical, 2012, 164(1):96-100. https://www.sciencedirect.com/science/article/pii/S0925400512001116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views(2962) PDF downloads(149) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return