Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
Citation: XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535

Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources

doi: 10.3788/CO.20191203.0535
Funds:

the National Basic Research Program of China(973) 2015CB755403

the National Key Research and Development Projects 2016YFC0101001

National Natural Science Foundation of China 61775160

National Natural Science Foundation of China 61771332

National Natural Science Foundation of China 61471257

China Postdoctoral Science Foundation 2016M602954

Postdoctoral Science Foundation of Chongqing Xm2016021

More Information
  • Corresponding author: XU De-gang, E-mail:xudegang@tju.edu.cn
  • Received Date: 13 Nov 2018
  • Rev Recd Date: 10 Dec 2018
  • Publish Date: 01 Jun 2019
  • Nonlinear optical(NLO) crystals are the determinant in nonlinear optics. Recently, a variety of new organic crystals have been developed to further improve the output energy and conversion efficiency and to broaden the bandwidth of THz waves based on nonlinear optical frequency conversion technology. These crystals have become an ideal material for generating THz waves with their excellent performance in nonlinear optics. In this paper, the properties of different organic crystals are introduced in the classification of ionic crystals and nonionic molecular crystals, and the progress of THz sources that use the different organic crystals are summarized. At the same time, the applications and the trends in the development of broadband THz radiation using organic crystals are analyzed.

     

  • loading
  • [1]
    SIEGEL P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory & Techniques, 2004, 52(10):2438-2447. doi: 10.1109-TMTT.2004.835916/
    [2]
    SIRTORI C. Applied physics: bridge for the terahertz gap[J]. Nature, 2002, 417(6885):132-133. https://www.ncbi.nlm.nih.gov/pubmed/12000945
    [3]
    YANG X, ZHAO X, YANG K, et al.. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824. doi: 10.1016/j.tibtech.2016.04.008
    [4]
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [5]
    刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3):300-309, 376. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009

    LIU H X, YAO J Q, WANG Y Y, et al.. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3):300-309, 376.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009
    [6]
    KATO M, TRIPATHI S R, MURATE K, et al.. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection[J]. Optics Express, 2016, 24(6):6425-6432. doi: 10.1364/OE.24.006425
    [7]
    SUIZU K, MIYAMOTO K, YAMASHITA T, et al.. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 2007, 32(19):2885-2887. doi: 10.1364/OL.32.002885
    [8]
    SCHNEIDER A, NEIS M, STILLHART M, et al.. Generation of terahertz pulses through optical rectification in organic DAST crystals:theory and experiment[J]. Journal of the Optical Society of America B, 2006, 23(9):1822-1835. doi: 10.1364/JOSAB.23.001822
    [9]
    TAKIDA Y, NAWATA K, SUZUKI S, et al.. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes[J]. Optics Express, 2017, 25(5):5389-5396. doi: 10.1364/OE.25.005389
    [10]
    YAMASHITA M, TAKAHASHI H, OUCHI T, et al.. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector[J]. Applied Physics Letters, 2014, 104(5):051103. doi: 10.1063/1.4862974
    [11]
    JOOSHESH A, FESHARAKI F, BAHRAMI-YEKTA V, et al.. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 2017, 25(18):22140-22148. doi: 10.1364/OE.25.022140
    [12]
    CARNIO B N, GREIG S R, FIRBY C J, et al.. Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal[J]. Applied Physics Letters, 2016, 108:261109. doi: 10.1063/1.4955040
    [13]
    SIM K I, JO Y C, HA T, et al.. Terahertz electrodynamics and superconducting energy gap of NbN[J]. Journal of the Korean Physical Society, 2017, 71(9):571-574. doi: 10.3938/jkps.71.571
    [14]
    LIU H, BAI W, FENG J T, et al.. The synthesis of large-diameter ZnTe crystal for THz emitting and detection[J]. Journal of Crystal Growth, 2017, 475:115-120. doi: 10.1016/j.jcrysgro.2017.06.009
    [15]
    MEIER U, BÖSCH M, BOSSHARD C, et al.. Parametric interactions in the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium to sylate at telecommunication wavelengths[J]. Journal of Applied Physics, 1998, 83(7):3486-3489. doi: 10.1063/1.366560
    [16]
    MORI Y, TAKAHASHI Y, IWAI T, et al.. Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate(DAST) Crystals[J]. Japanese Journal of Applied Physics, 2000, 39(10A):L1006-L1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4be9a97409d57eb46b602cec55665a80
    [17]
    JAGANNATHAN K, KALAINATHAN S, GNANASEKARAN T, et al.. Growth and characterization of the NLO crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate(DAST)[J]. Crystal Growth & Design, 2007, 7(5):859-863. http://pubs.acs.org/cgi-bin/abstract.cgi/cgdefu/2007/7/i05/abs/cg0602414.html
    [18]
    LI Y, WU ZH Y, ZHANG X Y, et al.. Crystal growth and terahertz wave generation of organic NLO crystals:OH1[J]. Journal of Crystal Growth, 2014, 402:53-59. doi: 10.1016/j.jcrysgro.2014.04.033
    [19]
    ZHONG K, MEI J L, WANG M R, et al.. Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(1):87-95. doi: 10.1007/s10762-016-0316-3
    [20]
    LEE S H, JAZBINSEK M, HAURI C P, et al.. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications[J]. Cryst. Eng. Comm., 2016, 18(38):7180-7203. doi: 10.1039/C6CE00707D
    [21]
    PAN F, KNÖPFLE G, BOSSHARD C, et al.. Electro-optic properties of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate[J]. Applied Physics Letters, 1996, 69(1):13-15. doi: 10.1063/1.118101
    [22]
    HUNZIKER C, KWON S J, FIGI H, et al.. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene}malononitrile:linear and nonlinear optical properties[J]. Journal of the Optical Society of America B, 2008, 25(10):1678-1683. doi: 10.1364/JOSAB.25.001678
    [23]
    MARDER S R, PERRY J W, SCHAEFER W P. Synthesis of organic salts with large second-order optical nonlinearities[J]. Science, 1989, 245(4918):626-628. doi: 10.1126/science.245.4918.626
    [24]
    RUIZ B, JAZBINSEK M, GVNTER P. Crystal growth of DAST[J]. Crystal Growth & Design, 2008, 8(11):4173-4184. http://d.old.wanfangdata.com.cn/Periodical/shlgdxxb201805006
    [25]
    PAN F, WONG M S, BOSSHARD C, et al.. Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate(DAST)[J]. Advanced Materials, 1996, 8(7):592-595. doi: 10.1002/(ISSN)1521-4095
    [26]
    JAZBINSEK M, MUTTER L, GVNTER P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5):1298-1311. doi: 10.1109/JSTQE.2008.921407
    [27]
    YANG Z, MUTTER L, STILLHART M, et al.. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation[J]. Advanced Functional Materials, 2007, 17(13):2018-2023. doi: 10.1002/adfm.v17:13
    [28]
    TANIUCHI T, IKEDA S, MINENO Y, et al.. Terahertz properties of a new organic crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate[J]. Japanese Journal of Applied Physics, 2005, 44(28-32):L932-L934. https://www.researchgate.net/publication/243743789_Terahertz_Properties_of_a_New_Organic_Crystal_4'-Dimethylamino-N-methyl-4-stilbazolium_p-Chlorobenzenesulfonate
    [29]
    MATSUKAWA T, NOTAKE T, NAWATA K, et al.. Terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium p-bromobenzenesulfonate crystal:effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives[J]. Optical Materials, 2014, 36(12):1995-1999. doi: 10.1016/j.optmat.2014.01.012
    [30]
    BRUNNER F, SCHNEIDER A, GVN TER P. Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser[J]. Applied Physics Letters, 2009, 94(6):061119. doi: 10.1063/1.3080214
    [31]
    MATSUKAWA T, TAKAHASHI Y, MIYABARA R, et al.. Development of DAST-derivative crystals for terahertz waves generation[J]. Journal of Crystal Growth, 2009, 311(3):568-571. doi: 10.1016/j.jcrysgro.2008.09.080
    [32]
    VIJAY R J, MELIKECHI N, THOMAS T, et al.. Growth, structural, optical and thermal properties of potential THz material:N, N-dimethylamino-N'-methylstilbazolium 4-styrenesulphonate[J]. Journal of Crystal Growth, 2012, 338(1):170-176. doi: 10.1016/j.jcrysgro.2011.10.045
    [33]
    RUIZ B, YANG ZH, GRAMLICH V, et al.. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity[J]. Journal of Materials Chemistry, 2006, 16(27):2839-2842. doi: 10.1039/B603049A
    [34]
    LEE S H, KOO M J, LEE K H, et al.. Quinolinium-based organic electro-optic crystals:crystal characteristics in solvent mixtures and optical properties in the terahertz range[J]. Materials Chemistry and Physics, 2016, 169:62-70. doi: 10.1016/j.matchemphys.2015.11.028
    [35]
    JEONG J H, KANG B J, KIM J S, et al.. High-power broadband organic THz generator[J]. Scientific Report, 2013, 3:3200. doi: 10.1038/srep03200
    [36]
    LEE S H, LU J, LEE S J, et al.. Benzothiazolium single crystals:a new class of nonlinear optical crystals with efficient THz wave generation[J]. Advanced Materials, 2017, 29(30):1701748. doi: 10.1002/adma.201701748
    [37]
    KANG B J, BAEK I H, JEONG J H, et al.. Characteristics of efficient few-cycle terahertz radiation generated in as-grown nonlinear organic single crystals[J]. Current Applied Physics, 2014, 14(3):403-406. doi: 10.1016/j.cap.2013.12.023
    [38]
    KANG B J, BAEK I H, LEE S H, et al.. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz[J]. Optics Express, 2016, 24(10):11054-11061. doi: 10.1364/OE.24.011054
    [39]
    BHARATH D, KALAINATHAN S. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal[J]. Optics & Laser Technology, 2014, 63:90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=096e23bce23be3e8a6920ea35e881345
    [40]
    LEMKE R. Solvatochromie von 80 mμ in verschiedenen Alkoholen bei Arylidenisophoron-Abkömmlingen[J]. Chemische Berichte, 1970, 103(6):1894-1899. doi: 10.1002/(ISSN)1099-0682
    [41]
    KOLEV T, GLAVCHEVA Z, YANCHEVA D, et al.. 2-{3-[2-(4-hydroxyphenyl)vinyl]-5, 5-dimethylcyclohex-2-en-1-ylidene}malononitrile[J]. Acta Crystallographica, 2001, E57(6):o561-o562..
    [42]
    BRUNNER F D J, KWON O P, KWON S J, et al.. Hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection[J]. Optics Express, 2008, 16(21):16496-16508. doi: 10.1364/OE.16.016496
    [43]
    HASHIMOTO H, OKADA Y, FUJIMURA H, et al.. Second-harmonic generation from single crystals of N-substituted 4-Nitroanilines[J]. Japanese Journal of Applied Physics, 1997, 36(11):6754-6760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9077354
    [44]
    PIELA K, TUROWSKA-TYRK I, DROZD M, et al.. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and raman spectroscopy[J]. Journal of Molecular Structure, 2011, 991(1-3):42-49. doi: 10.1016/j.molstruc.2011.01.066
    [45]
    MIYAMOTO K, MINAMIDE H, FUJIWARA M, et al.. Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal[J]. Optics Letters, 2008, 33(3):252-254. doi: 10.1364/OL.33.000252
    [46]
    ZHANG X C, MA X F, JIN Y, et al.. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 1992, 61(26):3080-3082. doi: 10.1063/1.107968
    [47]
    KAWASE K, MIZUNO M, SOHMA S, et al.. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser[J]. Optics Letters, 1999, 24(15):1065-1067. doi: 10.1364/OL.24.001065
    [48]
    WALTHER M, JENSBY K, KEIDING S R, et al.. Far-infrared properties of DAST[J]. Optics Letters, 2000, 25(12):911-913. doi: 10.1364/OL.25.000911
    [49]
    KAWASE K, HATANAKA T, TAKAHASHI H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 2000, 25(23):1714-1716. doi: 10.1364/OL.25.001714
    [50]
    SCHNEIDER A, BIAGGIOB I, GVNTER P. Optimized generation of THz pulses via optical rectification in the organic salt DAST[J]. Optics Communications, 2003, 224(4-6):337 341. doi: 10.1016/j.optcom.2003.07.013
    [51]
    TANIUCHI T, OKADA S, NAKANISHI H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 2004, 95(11):5984-5988. doi: 10.1063/1.1713045
    [52]
    ITO H, SUIZU K, YAMASHITA T, et al.. Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal[J]. Japanese Journal of Applied Physics, 2007, 46(11):7321-7324. doi: 10.1143/JJAP.46.7321
    [53]
    SHIBUYA T, AKIBA T, SUIZU K, et al.. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions[J]. Applied Physics Express, 2008, 1(4):042002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72afc8869ba914f312a28033328049ad
    [54]
    SCHNEIDER A, STILLHART M, GVNTER P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths[J]. Optics Express, 2006, 14(12):5376-5384. doi: 10.1364/OE.14.005376
    [55]
    LIU J J, MERKTA F. Generation of tunable Fourier-transform-limited terahertz pulses in 4-N, N-dimethylamino-4'-N'-methyl stilbazolium tosylate crystals[J]. Applied Physics Letters, 2008, 93(13):131105. doi: 10.1063/1.2977490
    [56]
    CUNNINGHAM P D, HAYDEN L M. Optical properties of DAST in the THz range[J]. Optics Express, 2010, 18(23):23620-23625. doi: 10.1364/OE.18.023620
    [57]
    SUIZU K, SHIBUYA T, UCHIDA H, et al.. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal[J]. Optics Express, 2010, 18(4):3338-3344. doi: 10.1364/OE.18.003338
    [58]
    UCHIDA H, OOTA K, MINAMI T, et al.. Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Applied Physics Express, 2017, 10(6):062601. doi: 10.7567/APEX.10.062601
    [59]
    KATAYAMA I, AKAI R, BITO M, et al.. Ultrabroad band terahertz generation using 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate single crystals[J]. Applied Physics Letters, 2010, 97(2):021105. doi: 10.1063/1.3463452
    [60]
    HAURI C P, RUCHERT C, VICARIO C, et al.. Strong-field single-cycle THz pulses generated in an organic crysta[J]. Applied Physics Letters, 2011, 99(16):161116. doi: 10.1063/1.3655331
    [61]
    TANG M, MINAMIDE H, WANG Y Y, et al.. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 2011, 19(2):779-786. doi: 10.1364/OE.19.000779
    [62]
    NAWATA K, ABE T, MIYAKE Y, et al.. Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 2012, 5(11):112401. doi: 10.1143/APEX.5.112401
    [63]
    DOLASINSKI B, POWERS P E, HAUS J W, et al.. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG[J]. Optics Express, 2015, 23(3):3669-3680. doi: 10.1364/OE.23.003669
    [64]
    TOKIZANE Y, NAWATA K, HAN ZH L, et al.. Tunable terahertz waves from 4-dimethylamino-N'-methyl-4'-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 2017, 10(2):022101. doi: 10.7567/APEX.10.022101
    [65]
    MONOSZLAI B, VICARIO C, JAZBINSEK M, et al.. High-energy terahertz pulses from organic crystals:DAST and DSTMS pumped at Ti:sapphire wavelength[J]. Optics Letters, 2013, 38(23):5106-5109. doi: 10.1364/OL.38.005106
    [66]
    TENG B, WANG SH H, FENG K, et al.. Crystal growth, quality characterization and THz properties of DAST crystals[J]. Crystal Research & Technology, 2014, 49(12):943-947. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce96fa341af6417043a0c69cd023a8a9
    [67]
    MATSUKAWA T, MINENO Y, ODANI T, et al.. Synthesis and terahertz-wave generation of mixed crystals composed of 1-methyl-4 -{2-[4-(dimethylamino)- phenyl]ethenyl} pyridinium p-toluenesulfonate and p-chlorobenzenes-Ulfonate[J]. Journal of Crystal Growth, 2007, 299(2):344-348. doi: 10.1016/j.jcrysgro.2006.11.303
    [68]
    MATSUKAWA T, YOSHIMURA M, TAKAHASHI Y, et al.. Bulk crystal growth of stilbazolium derivatives for terahertz waves generation[J]. Japanese Journal of Applied Physics, 2010, 49(7R):075502. https://www.researchgate.net/publication/243749745_Bulk_Crystal_Growth_of_Stilbazolium_Derivatives_for_Terahertz_Waves_Generation?ev=auth_pub
    [69]
    BRAHADEESWARAN S, TAKAHASHI Y, YOSHIMURA M, et al.. Growth of ultrathin and highly efficient organic nonlinear optical crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies[J]. Crystal Growth & Design, 2013, 13(2):415-421. https://www.researchgate.net/publication/263960327_Growth_of_Ultrathin_and_Highly_Efficient_Organic_Nonlinear_Optical_Crystal_4'-Dimethylamino-N-methyl-4-Stilbazolium_p-Chlorobenzenesulfonate_for_Enhanced_Terahertz_Efficiency_at_Higher_Frequencies
    [70]
    MUTTER L, BRUNNER F D J, YANG Z, et al.. Linear and nonlinear optical properties of the organic crystal DSTMS[J]. Journal of the Optical Society of America B, 2007, 24(9):2556-2561. doi: 10.1364/JOSAB.24.002556
    [71]
    STILLHART M, SCHNEIDER A, GVNTER P. Optical properties of 4-N, N-dimethylamino-4-N-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate crystals at terahertz frequencies[J]. Journal of the Optical Society of America B, 2008, 25(11):1914-1919. doi: 10.1364/JOSAB.25.001914
    [72]
    RUCHERT C, VICARIO C, HAURI C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 2013, 110(12):123902. doi: 10.1103/PhysRevLett.110.123902
    [73]
    VICARIO C, MONOSZLAI B, HAURI C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 2014, 112(21):213901. doi: 10.1103/PhysRevLett.112.213901
    [74]
    LIU P X, XU D G, LI Y, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. Europhysics Letters, 2014, 106(6):60001. doi: 10.1209/0295-5075/106/60001
    [75]
    SHALABY M, HAURI C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 2015, 6:5976. doi: 10.1038/ncomms6976
    [76]
    YANG S G, WANG X J, WU ZH H, et al.. Narrow linewidth terahertz generation engined by all-fiber parametric optical source[J]. IEEE Photonics Journal, 2015, 7(6):1300407. https://www.researchgate.net/publication/283244897_Narrow_Linewidth_Terahertz_Generation_Engined_by_All-Fiber_Parametric_Optical_Source?ev=auth_pub
    [77]
    SOMMA C, FOLPINI G, GUPTA J, et al.. Ultra-broadband terahertz pulses generated in the organic crystal DSTMS[J]. Optics Letters, 2015, 40(14):3404-3407. doi: 10.1364/OL.40.003404
    [78]
    ZHANG Y, ZHANG X L, LI SH X, et al.. Broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector[J]. Scientific Reports, 2016, 6:26949. doi: 10.1038/srep26949
    [79]
    LIU B, BROMBERGER H, CARTELLA A, et al.. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz[J]. Optics Letters, 2017, 42(1):129-131. doi: 10.1364/OL.42.000129
    [80]
    KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. All organic terahertz electromagnetic wave emission and detection using highly purified N-benzyl-2-methyl-4-nitroaniline crystals[J]. Japanese Journal of Applied Physics, 2006, 45(5A):4068-4073. doi: 10.1143/JJAP.45.4068
    [81]
    KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. Determination of refractive indices and absorption coefficients of highly purified N-benzyl-2-methyl-4-nitroaniline crystal in terahertz frequency regime[J]. Japanese Journal of Applied Physics, 2006, 45(29):L761-L764. doi: 10.1143/JJAP.45.L761
    [82]
    MIYAMOTO K, OHNO S, FUJIWARA M, et al.. Optimized terahertz-wave generation using BNA-DFG[J]. Optics Express, 2009, 17(17):14832-14838. doi: 10.1364/OE.17.014832
    [83]
    NOTAKE T, NAWATA K, KAWAMATA H, et al.. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dualwavelength BBO optical parametric oscillator[J]. Optics Express, 2012, 20(23):25850-25857. doi: 10.1364/OE.20.025850
    [84]
    NOTAKE T, NAWATA K, KAWAMATA H, et al.. Solution growth of high-quality organic N-benzyl-2-methyl-4-nitroaniline crystal for ultra-wideband tunable DFG-THz source[J]. Optical Materials Express, 2012, 2(2):119-125. doi: 10.1364/OME.2.000119
    [85]
    KAMADA K, TAKIDA Y, MINAMIDE H, et al.. Growth of N-benzyl-2-methyl-4-nitroaniline(BNA) single crystal fibers by micro-pulling down method[J]. Journal of Crystal Growth, 2016, 452:162-165. doi: 10.1016/j.jcrysgro.2016.04.041
    [86]
    SHALABY M, VICARIO C, THIRUPUGALMANI K, et al.. Intense THz source based on BNA organic crystal pumped at TI:sapphire wavelength[J]. Optics Letters, 2016, 41(8):1777-1780. doi: 10.1364/OL.41.001777
    [87]
    KWON O P, KWON S J, JAZBINSEK M, et al.. Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications[J]. Advanced Functional Materials, 2008, 18(20):3242-3250. doi: 10.1002/adfm.v18:20
    [88]
    RUCHERT C, VICARIO C, HAURI C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 2012, 37(5):899-901. doi: 10.1364/OL.37.000899
    [89]
    UCHIDA H, TRIPATHI S R, SUIZU K, et al.. Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation[J]. Applied Physics B, 2013, 111(3):489-493. doi: 10.1007/s00340-013-5362-0
    [90]
    STEPANOV A G, RUCHERT C, LEVALLOIS J, et al.. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K[J]. Optical Materials Express, 2014, 4(4):870-875. doi: 10.1364/OME.4.000870
    [91]
    MAJKIC' A, ZGONIK M, PETELIN A, et al.. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied Physics Letters, 2014, 105(14):141115. doi: 10.1063/1.4897639
    [92]
    VICARIO C, JAZBINSEK M, OVCHINNIKOV A V, et al.. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser[J]. Optics Express, 2015, 23(4):4573-4580. doi: 10.1364/OE.23.004573
    [93]
    KIM J, LEE S H, LEE S C, et al.. Terahertz phonon modes of highly efficient electro-optic phenyltriene OH1 crystals[J]. Journal of Physical Chemistry C, 2016, 120(42):24360-24369. doi: 10.1021/acs.jpcc.6b07979
    [94]
    LIU P X, ZHANG X Y, YAN CH, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 2016, 108(1):011104. doi: 10.1063/1.4939456
    [95]
    ZHANG X Y, JIANG X X, LIU P X, et al.. Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation[J]. Cryst.Eng.Comm., 2016, 18(20):3667-3673. doi: 10.1039/C6CE00398B
    [96]
    KIM P J, JEONG J H, JAZBINSEK M, et al.. Highly efficient organic THz generator pumped at near-infrared:quinolinium single crystals[J]. Advanced Functional Materials, 2012, 22(1):200-209. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225693569/
    [97]
    BRUNNER F D J, LEE S H, KWON O P, et al.. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS[J]. Optical Materials Express, 2014, 4(8):1586-1592. doi: 10.1364/OME.4.001586
    [98]
    VICARIO C, MONOSZLAI B, JAZBINSEK M, et al.. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap[J]. Scientific Reports, 2015, 5:14394. doi: 10.1038/srep14394
    [99]
    LU J, HWANG H Y, LI X, et al.. Tunable multi-cycle THz generation in organic crystal HMQ-TMS[J]. Optics Express, 2015, 23(17):22723-22729. doi: 10.1364/OE.23.022723
    [100]
    LEE S H, LEE S J, JAZBINSEK M, et al.. Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications[J]. Cryst.Eng.Comm., 2016, 18(38):7311-7318. doi: 10.1039/C6CE00958A
    [101]
    HE Y X, WANG Y Y, XU D G, et al.. High-energy and ultra-wideband tunable terahertz source with DAST crystal via diflerence frequency generation[J]. Applied Physics B, 2018, 124(1):16. doi: 10.1007/s00340-017-6887-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article views(4586) PDF downloads(299) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return