Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
Citation: XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535

Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources

doi: 10.3788/CO.20191203.0535

the National Basic Research Program of China(973) 2015CB755403

the National Key Research and Development Projects 2016YFC0101001

National Natural Science Foundation of China 61775160

National Natural Science Foundation of China 61771332

National Natural Science Foundation of China 61471257

China Postdoctoral Science Foundation 2016M602954

Postdoctoral Science Foundation of Chongqing Xm2016021

More Information
  • Corresponding author: XU De-gang, E-mail:xudegang@tju.edu.cn
  • Received Date: 13 Nov 2018
  • Rev Recd Date: 10 Dec 2018
  • Publish Date: 01 Jun 2019
  • Nonlinear optical(NLO) crystals are the determinant in nonlinear optics. Recently, a variety of new organic crystals have been developed to further improve the output energy and conversion efficiency and to broaden the bandwidth of THz waves based on nonlinear optical frequency conversion technology. These crystals have become an ideal material for generating THz waves with their excellent performance in nonlinear optics. In this paper, the properties of different organic crystals are introduced in the classification of ionic crystals and nonionic molecular crystals, and the progress of THz sources that use the different organic crystals are summarized. At the same time, the applications and the trends in the development of broadband THz radiation using organic crystals are analyzed.


  • loading
  • [1]
    SIEGEL P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory & Techniques, 2004, 52(10):2438-2447. doi: 10.1109-TMTT.2004.835916/
    SIRTORI C. Applied physics: bridge for the terahertz gap[J]. Nature, 2002, 417(6885):132-133. https://www.ncbi.nlm.nih.gov/pubmed/12000945
    YANG X, ZHAO X, YANG K, et al.. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824. doi: 10.1016/j.tibtech.2016.04.008
    TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3):300-309, 376. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009

    LIU H X, YAO J Q, WANG Y Y, et al.. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3):300-309, 376.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009
    KATO M, TRIPATHI S R, MURATE K, et al.. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection[J]. Optics Express, 2016, 24(6):6425-6432. doi: 10.1364/OE.24.006425
    SUIZU K, MIYAMOTO K, YAMASHITA T, et al.. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 2007, 32(19):2885-2887. doi: 10.1364/OL.32.002885
    SCHNEIDER A, NEIS M, STILLHART M, et al.. Generation of terahertz pulses through optical rectification in organic DAST crystals:theory and experiment[J]. Journal of the Optical Society of America B, 2006, 23(9):1822-1835. doi: 10.1364/JOSAB.23.001822
    TAKIDA Y, NAWATA K, SUZUKI S, et al.. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes[J]. Optics Express, 2017, 25(5):5389-5396. doi: 10.1364/OE.25.005389
    YAMASHITA M, TAKAHASHI H, OUCHI T, et al.. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector[J]. Applied Physics Letters, 2014, 104(5):051103. doi: 10.1063/1.4862974
    JOOSHESH A, FESHARAKI F, BAHRAMI-YEKTA V, et al.. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 2017, 25(18):22140-22148. doi: 10.1364/OE.25.022140
    CARNIO B N, GREIG S R, FIRBY C J, et al.. Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal[J]. Applied Physics Letters, 2016, 108:261109. doi: 10.1063/1.4955040
    SIM K I, JO Y C, HA T, et al.. Terahertz electrodynamics and superconducting energy gap of NbN[J]. Journal of the Korean Physical Society, 2017, 71(9):571-574. doi: 10.3938/jkps.71.571
    LIU H, BAI W, FENG J T, et al.. The synthesis of large-diameter ZnTe crystal for THz emitting and detection[J]. Journal of Crystal Growth, 2017, 475:115-120. doi: 10.1016/j.jcrysgro.2017.06.009
    MEIER U, BÖSCH M, BOSSHARD C, et al.. Parametric interactions in the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium to sylate at telecommunication wavelengths[J]. Journal of Applied Physics, 1998, 83(7):3486-3489. doi: 10.1063/1.366560
    MORI Y, TAKAHASHI Y, IWAI T, et al.. Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate(DAST) Crystals[J]. Japanese Journal of Applied Physics, 2000, 39(10A):L1006-L1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4be9a97409d57eb46b602cec55665a80
    JAGANNATHAN K, KALAINATHAN S, GNANASEKARAN T, et al.. Growth and characterization of the NLO crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate(DAST)[J]. Crystal Growth & Design, 2007, 7(5):859-863. http://pubs.acs.org/cgi-bin/abstract.cgi/cgdefu/2007/7/i05/abs/cg0602414.html
    LI Y, WU ZH Y, ZHANG X Y, et al.. Crystal growth and terahertz wave generation of organic NLO crystals:OH1[J]. Journal of Crystal Growth, 2014, 402:53-59. doi: 10.1016/j.jcrysgro.2014.04.033
    ZHONG K, MEI J L, WANG M R, et al.. Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(1):87-95. doi: 10.1007/s10762-016-0316-3
    LEE S H, JAZBINSEK M, HAURI C P, et al.. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications[J]. Cryst. Eng. Comm., 2016, 18(38):7180-7203. doi: 10.1039/C6CE00707D
    PAN F, KNÖPFLE G, BOSSHARD C, et al.. Electro-optic properties of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate[J]. Applied Physics Letters, 1996, 69(1):13-15. doi: 10.1063/1.118101
    HUNZIKER C, KWON S J, FIGI H, et al.. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene}malononitrile:linear and nonlinear optical properties[J]. Journal of the Optical Society of America B, 2008, 25(10):1678-1683. doi: 10.1364/JOSAB.25.001678
    MARDER S R, PERRY J W, SCHAEFER W P. Synthesis of organic salts with large second-order optical nonlinearities[J]. Science, 1989, 245(4918):626-628. doi: 10.1126/science.245.4918.626
    RUIZ B, JAZBINSEK M, GVNTER P. Crystal growth of DAST[J]. Crystal Growth & Design, 2008, 8(11):4173-4184. http://d.old.wanfangdata.com.cn/Periodical/shlgdxxb201805006
    PAN F, WONG M S, BOSSHARD C, et al.. Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate(DAST)[J]. Advanced Materials, 1996, 8(7):592-595. doi: 10.1002/(ISSN)1521-4095
    JAZBINSEK M, MUTTER L, GVNTER P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5):1298-1311. doi: 10.1109/JSTQE.2008.921407
    YANG Z, MUTTER L, STILLHART M, et al.. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation[J]. Advanced Functional Materials, 2007, 17(13):2018-2023. doi: 10.1002/adfm.v17:13
    TANIUCHI T, IKEDA S, MINENO Y, et al.. Terahertz properties of a new organic crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate[J]. Japanese Journal of Applied Physics, 2005, 44(28-32):L932-L934. https://www.researchgate.net/publication/243743789_Terahertz_Properties_of_a_New_Organic_Crystal_4'-Dimethylamino-N-methyl-4-stilbazolium_p-Chlorobenzenesulfonate
    MATSUKAWA T, NOTAKE T, NAWATA K, et al.. Terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium p-bromobenzenesulfonate crystal:effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives[J]. Optical Materials, 2014, 36(12):1995-1999. doi: 10.1016/j.optmat.2014.01.012
    BRUNNER F, SCHNEIDER A, GVN TER P. Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser[J]. Applied Physics Letters, 2009, 94(6):061119. doi: 10.1063/1.3080214
    MATSUKAWA T, TAKAHASHI Y, MIYABARA R, et al.. Development of DAST-derivative crystals for terahertz waves generation[J]. Journal of Crystal Growth, 2009, 311(3):568-571. doi: 10.1016/j.jcrysgro.2008.09.080
    VIJAY R J, MELIKECHI N, THOMAS T, et al.. Growth, structural, optical and thermal properties of potential THz material:N, N-dimethylamino-N'-methylstilbazolium 4-styrenesulphonate[J]. Journal of Crystal Growth, 2012, 338(1):170-176. doi: 10.1016/j.jcrysgro.2011.10.045
    RUIZ B, YANG ZH, GRAMLICH V, et al.. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity[J]. Journal of Materials Chemistry, 2006, 16(27):2839-2842. doi: 10.1039/B603049A
    LEE S H, KOO M J, LEE K H, et al.. Quinolinium-based organic electro-optic crystals:crystal characteristics in solvent mixtures and optical properties in the terahertz range[J]. Materials Chemistry and Physics, 2016, 169:62-70. doi: 10.1016/j.matchemphys.2015.11.028
    JEONG J H, KANG B J, KIM J S, et al.. High-power broadband organic THz generator[J]. Scientific Report, 2013, 3:3200. doi: 10.1038/srep03200
    LEE S H, LU J, LEE S J, et al.. Benzothiazolium single crystals:a new class of nonlinear optical crystals with efficient THz wave generation[J]. Advanced Materials, 2017, 29(30):1701748. doi: 10.1002/adma.201701748
    KANG B J, BAEK I H, JEONG J H, et al.. Characteristics of efficient few-cycle terahertz radiation generated in as-grown nonlinear organic single crystals[J]. Current Applied Physics, 2014, 14(3):403-406. doi: 10.1016/j.cap.2013.12.023
    KANG B J, BAEK I H, LEE S H, et al.. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz[J]. Optics Express, 2016, 24(10):11054-11061. doi: 10.1364/OE.24.011054
    BHARATH D, KALAINATHAN S. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal[J]. Optics & Laser Technology, 2014, 63:90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=096e23bce23be3e8a6920ea35e881345
    LEMKE R. Solvatochromie von 80 mμ in verschiedenen Alkoholen bei Arylidenisophoron-Abkömmlingen[J]. Chemische Berichte, 1970, 103(6):1894-1899. doi: 10.1002/(ISSN)1099-0682
    KOLEV T, GLAVCHEVA Z, YANCHEVA D, et al.. 2-{3-[2-(4-hydroxyphenyl)vinyl]-5, 5-dimethylcyclohex-2-en-1-ylidene}malononitrile[J]. Acta Crystallographica, 2001, E57(6):o561-o562..
    BRUNNER F D J, KWON O P, KWON S J, et al.. Hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection[J]. Optics Express, 2008, 16(21):16496-16508. doi: 10.1364/OE.16.016496
    HASHIMOTO H, OKADA Y, FUJIMURA H, et al.. Second-harmonic generation from single crystals of N-substituted 4-Nitroanilines[J]. Japanese Journal of Applied Physics, 1997, 36(11):6754-6760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9077354
    PIELA K, TUROWSKA-TYRK I, DROZD M, et al.. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and raman spectroscopy[J]. Journal of Molecular Structure, 2011, 991(1-3):42-49. doi: 10.1016/j.molstruc.2011.01.066
    MIYAMOTO K, MINAMIDE H, FUJIWARA M, et al.. Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal[J]. Optics Letters, 2008, 33(3):252-254. doi: 10.1364/OL.33.000252
    ZHANG X C, MA X F, JIN Y, et al.. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 1992, 61(26):3080-3082. doi: 10.1063/1.107968
    KAWASE K, MIZUNO M, SOHMA S, et al.. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser[J]. Optics Letters, 1999, 24(15):1065-1067. doi: 10.1364/OL.24.001065
    WALTHER M, JENSBY K, KEIDING S R, et al.. Far-infrared properties of DAST[J]. Optics Letters, 2000, 25(12):911-913. doi: 10.1364/OL.25.000911
    KAWASE K, HATANAKA T, TAKAHASHI H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 2000, 25(23):1714-1716. doi: 10.1364/OL.25.001714
    SCHNEIDER A, BIAGGIOB I, GVNTER P. Optimized generation of THz pulses via optical rectification in the organic salt DAST[J]. Optics Communications, 2003, 224(4-6):337 341. doi: 10.1016/j.optcom.2003.07.013
    TANIUCHI T, OKADA S, NAKANISHI H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 2004, 95(11):5984-5988. doi: 10.1063/1.1713045
    ITO H, SUIZU K, YAMASHITA T, et al.. Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal[J]. Japanese Journal of Applied Physics, 2007, 46(11):7321-7324. doi: 10.1143/JJAP.46.7321
    SHIBUYA T, AKIBA T, SUIZU K, et al.. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions[J]. Applied Physics Express, 2008, 1(4):042002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72afc8869ba914f312a28033328049ad
    SCHNEIDER A, STILLHART M, GVNTER P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths[J]. Optics Express, 2006, 14(12):5376-5384. doi: 10.1364/OE.14.005376
    LIU J J, MERKTA F. Generation of tunable Fourier-transform-limited terahertz pulses in 4-N, N-dimethylamino-4'-N'-methyl stilbazolium tosylate crystals[J]. Applied Physics Letters, 2008, 93(13):131105. doi: 10.1063/1.2977490
    CUNNINGHAM P D, HAYDEN L M. Optical properties of DAST in the THz range[J]. Optics Express, 2010, 18(23):23620-23625. doi: 10.1364/OE.18.023620
    SUIZU K, SHIBUYA T, UCHIDA H, et al.. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal[J]. Optics Express, 2010, 18(4):3338-3344. doi: 10.1364/OE.18.003338
    UCHIDA H, OOTA K, MINAMI T, et al.. Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Applied Physics Express, 2017, 10(6):062601. doi: 10.7567/APEX.10.062601
    KATAYAMA I, AKAI R, BITO M, et al.. Ultrabroad band terahertz generation using 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate single crystals[J]. Applied Physics Letters, 2010, 97(2):021105. doi: 10.1063/1.3463452
    HAURI C P, RUCHERT C, VICARIO C, et al.. Strong-field single-cycle THz pulses generated in an organic crysta[J]. Applied Physics Letters, 2011, 99(16):161116. doi: 10.1063/1.3655331
    TANG M, MINAMIDE H, WANG Y Y, et al.. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 2011, 19(2):779-786. doi: 10.1364/OE.19.000779
    NAWATA K, ABE T, MIYAKE Y, et al.. Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 2012, 5(11):112401. doi: 10.1143/APEX.5.112401
    DOLASINSKI B, POWERS P E, HAUS J W, et al.. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG[J]. Optics Express, 2015, 23(3):3669-3680. doi: 10.1364/OE.23.003669
    TOKIZANE Y, NAWATA K, HAN ZH L, et al.. Tunable terahertz waves from 4-dimethylamino-N'-methyl-4'-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 2017, 10(2):022101. doi: 10.7567/APEX.10.022101
    MONOSZLAI B, VICARIO C, JAZBINSEK M, et al.. High-energy terahertz pulses from organic crystals:DAST and DSTMS pumped at Ti:sapphire wavelength[J]. Optics Letters, 2013, 38(23):5106-5109. doi: 10.1364/OL.38.005106
    TENG B, WANG SH H, FENG K, et al.. Crystal growth, quality characterization and THz properties of DAST crystals[J]. Crystal Research & Technology, 2014, 49(12):943-947. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce96fa341af6417043a0c69cd023a8a9
    MATSUKAWA T, MINENO Y, ODANI T, et al.. Synthesis and terahertz-wave generation of mixed crystals composed of 1-methyl-4 -{2-[4-(dimethylamino)- phenyl]ethenyl} pyridinium p-toluenesulfonate and p-chlorobenzenes-Ulfonate[J]. Journal of Crystal Growth, 2007, 299(2):344-348. doi: 10.1016/j.jcrysgro.2006.11.303
    MATSUKAWA T, YOSHIMURA M, TAKAHASHI Y, et al.. Bulk crystal growth of stilbazolium derivatives for terahertz waves generation[J]. Japanese Journal of Applied Physics, 2010, 49(7R):075502. https://www.researchgate.net/publication/243749745_Bulk_Crystal_Growth_of_Stilbazolium_Derivatives_for_Terahertz_Waves_Generation?ev=auth_pub
    BRAHADEESWARAN S, TAKAHASHI Y, YOSHIMURA M, et al.. Growth of ultrathin and highly efficient organic nonlinear optical crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies[J]. Crystal Growth & Design, 2013, 13(2):415-421. https://www.researchgate.net/publication/263960327_Growth_of_Ultrathin_and_Highly_Efficient_Organic_Nonlinear_Optical_Crystal_4'-Dimethylamino-N-methyl-4-Stilbazolium_p-Chlorobenzenesulfonate_for_Enhanced_Terahertz_Efficiency_at_Higher_Frequencies
    MUTTER L, BRUNNER F D J, YANG Z, et al.. Linear and nonlinear optical properties of the organic crystal DSTMS[J]. Journal of the Optical Society of America B, 2007, 24(9):2556-2561. doi: 10.1364/JOSAB.24.002556
    STILLHART M, SCHNEIDER A, GVNTER P. Optical properties of 4-N, N-dimethylamino-4-N-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate crystals at terahertz frequencies[J]. Journal of the Optical Society of America B, 2008, 25(11):1914-1919. doi: 10.1364/JOSAB.25.001914
    RUCHERT C, VICARIO C, HAURI C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 2013, 110(12):123902. doi: 10.1103/PhysRevLett.110.123902
    VICARIO C, MONOSZLAI B, HAURI C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 2014, 112(21):213901. doi: 10.1103/PhysRevLett.112.213901
    LIU P X, XU D G, LI Y, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. Europhysics Letters, 2014, 106(6):60001. doi: 10.1209/0295-5075/106/60001
    SHALABY M, HAURI C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 2015, 6:5976. doi: 10.1038/ncomms6976
    YANG S G, WANG X J, WU ZH H, et al.. Narrow linewidth terahertz generation engined by all-fiber parametric optical source[J]. IEEE Photonics Journal, 2015, 7(6):1300407. https://www.researchgate.net/publication/283244897_Narrow_Linewidth_Terahertz_Generation_Engined_by_All-Fiber_Parametric_Optical_Source?ev=auth_pub
    SOMMA C, FOLPINI G, GUPTA J, et al.. Ultra-broadband terahertz pulses generated in the organic crystal DSTMS[J]. Optics Letters, 2015, 40(14):3404-3407. doi: 10.1364/OL.40.003404
    ZHANG Y, ZHANG X L, LI SH X, et al.. Broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector[J]. Scientific Reports, 2016, 6:26949. doi: 10.1038/srep26949
    LIU B, BROMBERGER H, CARTELLA A, et al.. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz[J]. Optics Letters, 2017, 42(1):129-131. doi: 10.1364/OL.42.000129
    KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. All organic terahertz electromagnetic wave emission and detection using highly purified N-benzyl-2-methyl-4-nitroaniline crystals[J]. Japanese Journal of Applied Physics, 2006, 45(5A):4068-4073. doi: 10.1143/JJAP.45.4068
    KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. Determination of refractive indices and absorption coefficients of highly purified N-benzyl-2-methyl-4-nitroaniline crystal in terahertz frequency regime[J]. Japanese Journal of Applied Physics, 2006, 45(29):L761-L764. doi: 10.1143/JJAP.45.L761
    MIYAMOTO K, OHNO S, FUJIWARA M, et al.. Optimized terahertz-wave generation using BNA-DFG[J]. Optics Express, 2009, 17(17):14832-14838. doi: 10.1364/OE.17.014832
    NOTAKE T, NAWATA K, KAWAMATA H, et al.. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dualwavelength BBO optical parametric oscillator[J]. Optics Express, 2012, 20(23):25850-25857. doi: 10.1364/OE.20.025850
    NOTAKE T, NAWATA K, KAWAMATA H, et al.. Solution growth of high-quality organic N-benzyl-2-methyl-4-nitroaniline crystal for ultra-wideband tunable DFG-THz source[J]. Optical Materials Express, 2012, 2(2):119-125. doi: 10.1364/OME.2.000119
    KAMADA K, TAKIDA Y, MINAMIDE H, et al.. Growth of N-benzyl-2-methyl-4-nitroaniline(BNA) single crystal fibers by micro-pulling down method[J]. Journal of Crystal Growth, 2016, 452:162-165. doi: 10.1016/j.jcrysgro.2016.04.041
    SHALABY M, VICARIO C, THIRUPUGALMANI K, et al.. Intense THz source based on BNA organic crystal pumped at TI:sapphire wavelength[J]. Optics Letters, 2016, 41(8):1777-1780. doi: 10.1364/OL.41.001777
    KWON O P, KWON S J, JAZBINSEK M, et al.. Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications[J]. Advanced Functional Materials, 2008, 18(20):3242-3250. doi: 10.1002/adfm.v18:20
    RUCHERT C, VICARIO C, HAURI C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 2012, 37(5):899-901. doi: 10.1364/OL.37.000899
    UCHIDA H, TRIPATHI S R, SUIZU K, et al.. Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation[J]. Applied Physics B, 2013, 111(3):489-493. doi: 10.1007/s00340-013-5362-0
    STEPANOV A G, RUCHERT C, LEVALLOIS J, et al.. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K[J]. Optical Materials Express, 2014, 4(4):870-875. doi: 10.1364/OME.4.000870
    MAJKIC' A, ZGONIK M, PETELIN A, et al.. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied Physics Letters, 2014, 105(14):141115. doi: 10.1063/1.4897639
    VICARIO C, JAZBINSEK M, OVCHINNIKOV A V, et al.. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser[J]. Optics Express, 2015, 23(4):4573-4580. doi: 10.1364/OE.23.004573
    KIM J, LEE S H, LEE S C, et al.. Terahertz phonon modes of highly efficient electro-optic phenyltriene OH1 crystals[J]. Journal of Physical Chemistry C, 2016, 120(42):24360-24369. doi: 10.1021/acs.jpcc.6b07979
    LIU P X, ZHANG X Y, YAN CH, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 2016, 108(1):011104. doi: 10.1063/1.4939456
    ZHANG X Y, JIANG X X, LIU P X, et al.. Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation[J]. Cryst.Eng.Comm., 2016, 18(20):3667-3673. doi: 10.1039/C6CE00398B
    KIM P J, JEONG J H, JAZBINSEK M, et al.. Highly efficient organic THz generator pumped at near-infrared:quinolinium single crystals[J]. Advanced Functional Materials, 2012, 22(1):200-209. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225693569/
    BRUNNER F D J, LEE S H, KWON O P, et al.. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS[J]. Optical Materials Express, 2014, 4(8):1586-1592. doi: 10.1364/OME.4.001586
    VICARIO C, MONOSZLAI B, JAZBINSEK M, et al.. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap[J]. Scientific Reports, 2015, 5:14394. doi: 10.1038/srep14394
    LU J, HWANG H Y, LI X, et al.. Tunable multi-cycle THz generation in organic crystal HMQ-TMS[J]. Optics Express, 2015, 23(17):22723-22729. doi: 10.1364/OE.23.022723
    LEE S H, LEE S J, JAZBINSEK M, et al.. Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications[J]. Cryst.Eng.Comm., 2016, 18(38):7311-7318. doi: 10.1039/C6CE00958A
    HE Y X, WANG Y Y, XU D G, et al.. High-energy and ultra-wideband tunable terahertz source with DAST crystal via diflerence frequency generation[J]. Applied Physics B, 2018, 124(1):16. doi: 10.1007/s00340-017-6887-4
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(4)

    Article views(4685) PDF downloads(310) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint