Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
YANG Chao, HE Jian-wu, KANG Qi, DUAN Li. Design and experimental study of sub-micro-scale thrust measurement systems[J]. Chinese Optics, 2019, 12(3): 526-534. doi: 10.3788/CO.20191203.0526
Citation: YANG Chao, HE Jian-wu, KANG Qi, DUAN Li. Design and experimental study of sub-micro-scale thrust measurement systems[J]. Chinese Optics, 2019, 12(3): 526-534. doi: 10.3788/CO.20191203.0526

Design and experimental study of sub-micro-scale thrust measurement systems

doi: 10.3788/CO.20191203.0526
Funds:

the Strategic Priority Research Program of Chinese Academy of Sciences XDB23030300

the Strategic Priority Research Program of Chinese Academy of Sciences XDA1502070901-01

the Strategic Priority Research Program of Chinese Academy of Sciences XDA1502070503

More Information
  • Corresponding author: DUAN Li, E-mail:duanli@imech.ac.cn
  • Received Date: 12 Dec 2018
  • Rev Recd Date: 10 Feb 2019
  • Publish Date: 01 Jun 2019
  • The space gravitational wave detection mission requires a micro-thruster with sub-micro-scale thrust resolution and thrust noise to achieve high-precision drag-free control tasks for satellite platforms. In order to calibrate the thrust of the above-mentioned micro-thrusters on the ground, a set of sub-micro-scale thrust measurement systems using a torsion pendulum is designed. The system uses a high-precision and high-resolution capacitive displacement sensor as the torsion swing angle displacement sensing device. A high-precision electronic balance is used to calibrate an electrostatic comb, and the static comb is used to observe the torsion pendulum to obtain the relationship between thrust and angular displacement. In addition, high-precision weak force calibration technology and sub-micro-scale micro-thrust on-line measurement technology are studied. The measurement error source and control scheme are analyzed. Finally, the static weak comb is used to generate a standard weak force to measure the torsion pendulum thrust resolution capability and range. The experimental results show that the system can measure a thrust range of 0.1 μN to 400 μN with a resolution that reaches 0.1 μN, and a background noise power spectral density of better than 0.1 μN/(10 mHz~1 Hz), which satisfies the requirements of space gravitational wave detection in the thrust measurement range of 10 mHz-1 Hz.

     

  • loading
  • [1]
    萨顿G P, 比布拉兹O.火箭发动机基础[M].洪鑫, 张宝炯, 译.北京: 科学出版社, 2003.

    SUTTON G P, BIBLARZ O. Rocket Engine Foundation[M]. HONG X, ZHANG B J, trans. Beijing: Science Press, 2003.(in Chinese)
    [2]
    韩先伟.微波等离子推力器真空实验研究与卫星应用探索[D].西安: 西北工业大学, 2002. http://cdmd.cnki.com.cn/Article/CDMD-10699-2003101467.htm

    HAN X W. Vacuum experiment research of microwave plasma thruster and application probe of geosynchronous satellite[D]. Xi'an: Northwestern Polytechnical University, 2002.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10699-2003101467.htm
    [3]
    方元坤, 袁斌文, 孟子阳, 等.分布式遥感编队多星协同观测中的姿态控制[J].光学 精密工程, 2019, 27(1):58-68. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201901008

    FANG Y K, YUAN B W, MENG Z Y, et al.. Attitude control in multi-satellite cooperative observations for distributed remote sensing[J]. Opt. Precision Eng., 2019, 27(1):58-68.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201901008
    [4]
    贺建武.射频离子微推力器工作机理及性能优化研究[D].北京: 中国科学院大学, 2017.

    HE J W. Researches on working mechanism and performance optimization of radio-frequency ion microthruster[D]. Beijing: University of the Chinese Academy of Sciences, 2017.(in Chinese)
    [5]
    洪延姬, 周伟静, 王广宇.微推力测量方法及其关键问题分析[J].航空学报, 2013, 34(10):2287-2299. http://d.old.wanfangdata.com.cn/Periodical/hkxb201310005

    HONG Y J, ZHOU W J, WANG G Y. Methods of microthrust measurement and analysis of its key issues[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2287-2299.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hkxb201310005
    [6]
    赵凤鸣.基于扭秤的弱力测量的初步分析和校验[D].沈阳: 东北大学, 2013: 14. http://cdmd.cnki.com.cn/Article/CDMD-10145-1015707476.htm

    ZHAO F M. Based on the weak-force torsion balance measurements preliminary analysis and verification[D]. Shenyang: Northeastern University, 2013: 14.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10145-1015707476.htm
    [7]
    汤海滨, 刘畅, 向民, 等.微推力全弹性测量装置[J].推进技术, 2007, 28(6):703-706. doi: 10.3321/j.issn:1001-4055.2007.06.024

    TANG H B, LIU CH, XIANG M, et al.. Full elastic microthrust measurement equipment[J]. Journal of Propulsion Technology, 2007, 28(6):703-706.(in Chinese) doi: 10.3321/j.issn:1001-4055.2007.06.024
    [8]
    EDAMITSU T, TAHARA H. Performance measurement and flowfield calculation of an electrothermal pulsed plasma thruster with a propellant feeding mechanism[C]. Proceedings of the 29th International Electric Propulsion Conference, 2005.
    [9]
    杨娟, 刘宪闯, 王与权, 等.微波推力器独立系统的三丝扭摆推力测量[J].推进技术, 2016, 37(2):362-371. http://d.old.wanfangdata.com.cn/Periodical/tjjs201602022

    YANG J, LIU X CH, WANG Y Q, et al.. Thrust measurement of an independent microwave thruster propulsion device with three-wire torsion pendulum thrust measurement system[J]. Journal of Propulsion Technology, 2016, 37(2):362-371.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201602022
    [10]
    NAGAO N, YOKOTA S, KOMURASAKI K, et al.. Development of a two-axis dual pendulum thrust stand for thrust vector measurement of hall thrusters[C]. Proceedings of the 30th International Electric Propulsion Conference, 2007.
    [11]
    PACKAN D, BONNET J, ROCCA S. Thrust measurements with the ONERA micronewton balance[C]. Proceedings of the 30th International Electric Propulsion Conference, 2007.
    [12]
    NEUNZIG O, DROBNY C, TAJMAR M. Development of a compact milli-newton thrust balance and characterization of a miniature hall-effect thruster[C]. Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, 2017.
    [13]
    马隆飞, 贺建武, 薛森文, 等.双丝扭秤微推力测量系统[J].推进技术, 2018, 39(4):948-954. http://d.old.wanfangdata.com.cn/Periodical/tjjs201804029

    MA L F, HE J W, XUE S W, et al.. A microthrust measurement system with two-wire torsion balance[J]. Journal of Propulsion Technology, 2018, 39(4):948-954.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201804029
    [14]
    姚东, 李钰鹏, 赵亚, 等.适用于光黏工艺的干涉仪公差保证方法[J].光学 精密工程, 2018, 26(8):1945-1953. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808015

    YAO D, LI Y P, ZHAO Y, et al.. Tolerance assurance of interferometer for optical HCB process[J]. Opt. Precision Eng., 2018, 26(8):1945-1953.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201808015
    [15]
    刘旭辉, 杨飞虎, 魏延明, 等.基于扭摆台架的动态推力测试方法研究[J].推进技术, 2017, 38(4):925-931. http://d.old.wanfangdata.com.cn/Periodical/tjjs201704025

    LIU X H, YANG F H, WEI Y M, et al.. Study of dynamic thrust measurement using torsional pendulum[J]. Journal of Propulsion Technology, 2017, 38(4):925-931.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/tjjs201704025
    [16]
    KOLBECK J, PORTER T E, KEIDAR M. High precision thrust balance development at the george washington[C]. Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, 2017.
    [17]
    葛川, 张德福, 李朋志, 等.电容式位移传感器的线性度标定与不确定度评定[J].光学 精密工程, 2015, 23(9):2546-2552. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509016

    GE CH, ZHANG D F, LI P ZH, et al.. Linearity calibration and uncertainty evaluation for capacitance displacement sensor[J]. Opt. Precision Eng., 2015, 23(9):2546-2552.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(2259) PDF downloads(231) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return