Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
CHAI Guo-zhi, HUANG Liang, QIAO Liang, ZHANG Guan-mao. Effect of the on-board residual magnetism on inertial sensors[J]. Chinese Optics, 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515
Citation: CHAI Guo-zhi, HUANG Liang, QIAO Liang, ZHANG Guan-mao. Effect of the on-board residual magnetism on inertial sensors[J]. Chinese Optics, 2019, 12(3): 515-525. doi: 10.3788/CO.20191203.0515

Effect of the on-board residual magnetism on inertial sensors

doi: 10.3788/CO.20191203.0515

the Fundamental Research Funds for the Central Universities lzujbky-2018-k11

More Information
  • Corresponding author: CHAI Guo-zhi, E-mail:chaigzh@lzu.edu.cn
  • Received Date: 2019-04-20
  • Rev Recd Date: 2019-05-07
  • Publish Date: 2019-06-01
  • The requirement of space gravitational wave detection on residual acceleration is extremely high(10-15 ms-2Hz-1/2), and the environmental magnetic field will cause magnetic force and Lorentz force. To ensure the accurately detection of gravitational wave, the environmental magnetic field and its gradient must be controlled within a low range. In this paper, we mainly research the effect of the on-board residual magnetism on internal sensors. Then, the relationship between residual magnetism and acceleration is explored from the aspects of interstellar magnetic field, residual magnetism of satellite components and time-varying magnetic field detection. Moreover, the simulation and detection of magnetic field are discussed. The results show that the remanence magnetic field can be reduced by optimizing the location and the orientation of the magnetic source. It is necessary to control magnetic field noise by real-time monitoring of interstellar magnetic field and time-varying magnetic field by adopting weak magnetic detection device for obtaining high-precision gravitational wave detection data. It can be concluded that it's necessary to analyze the influence of on-board residual magnetism on the inertial sensors, and the magnetic field evaluation schemes and weak magnetic detection methods for satellite platform should be developed.
  • loading
  • [1]
    DANZMANNK. LISA: Laser Interferometer Space Antenna[R]. A proposal in response to the ESA call for L3 mission concepts, ESA, 2017.
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al.. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116:061102. doi: 10.1103/PhysRevLett.116.061102
    黄双林, 龚雪飞, 徐鹏, 等.空间引力波探测——天文学的一个新窗口[J].中国科学:物理学力学天文学, 2017, 47(1):010404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004

    HUANG SH L, GONG X F, XU P, et al.. Gravitational wave detection in space-a new window in astronomy[J]. Scientia Sinica: Physica, Mechanica, Astronomica, 2017, 47(1):010404.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004
    SANDERS J, DYNE A, GOULD K, et al.. LISA Pathfinder MC & Magnetic control Plan[R]. S2.ASU.PL.2010, 3, 1-25.
    ARMANO M, AUOLEY H, AUGER G, et al.. Sub-femto-g free fall for space-based gravitational wave observatories:LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23):231101. doi: 10.1103/PhysRevLett.116.231101
    WANNER G. Space-based gravitational wave detection and how LISA Pathfinder successfully paved the way[J]. Nature Physics, 2019, 15(3):200-202. doi: 10.1038/s41567-019-0462-3
    GUO H, WU J. Space Science and Technology in China:A Roadmap to 2050[M]. Beijing:Science Press, 2010.
    龚雪飞, 徐生年, 袁业飞, 等.空间激光干涉引力波探测与早期宇宙结构形成[J].天文学进展, 2015, 33(1):59-83. doi: 10.3969/j.issn.1000-8349.2015.01.04

    GONG X F, XU SH N, YUAN Y F, et al.. Laser interferometric gravitational wave detection in space and structure formation in the early universe[J]. Progress in Astronomy, 2015, 33(1):59-83.(in Chinese) doi: 10.3969/j.issn.1000-8349.2015.01.04
    LUO J, CHEN L S, DUAN H Z, et al. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    CYRANOSKI D. Chinese gravitational-wave hunt hits crunch time[J]. Nature, 2016, 531(7593):150-151. doi: 10.1038/531150a
    SHAUL D N A, ARAUJ O H M, ROCHESTER G K, et al.. Evaluation of disturbances due to test mass charging for LISA[J]. Classical and Quantum Gravity, 2005, 22(10SI):S297-S309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=391be90896f39d607313e77b1f2bf68f
    DIAZ-AGUIL M. Magnetic diagnostics algorithms for LISA pathfinder: system identification and data analysis[D]. Barcelona: Universitat Polit cnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2011. http://www.ice.csic.es/view_event.php?EID=639
    HUELLER M, ARMANO M, CARBONE L, et al.. Measuring the LISA test mass magnetic properties with a torsion pendulum[J]. Classical and Quantum Gravity, 2005, 22(10SI):S521-S526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3c9d2f92e15d502c97413dc718404377
    LOBO A, DIAZ-AGUIL M. Magnetic experiments on board the LTP[R]. Tech. Rep. S2-IEC-TN-3044, Catalunya: IEEC 2010.
    DIAZ-AGUIL M, GARC A-BERRO E, LOBO A. LTP Magnetic Field Interpolation[R]. Tech. Rep. S2-IEC-OTH-3026, Catalunya: IEEC, 2008.
    JUNGE A, MARLIANI F. Prediction of DC magnetic fields for magnetic cleanliness on spacecraft[C]. 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA 2011: 834-839. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6038424
    MEHLEM K. Multiple magnetic dipole modeling and field prediction of satellites[J]. IEEE Transactions on Magnetics, 1978, 14(5):1064-1071. doi: 10.1109/TMAG.1978.1059983
    SANDERS J, DYNE A, GOULD K, et al.. LISA pathfinder EMC & magnetic control plan[R]. Tech. Rep. S2-ASU-PL-2010, Hertfordshire: Astrium 2005.
    Billingsley Aerospace & Defense. Spaceight Magnetometer Acceptance Router: TFM100G4[R]. Tech. Rep. SN 114-118, Billingsley, 2007.
    王嘉.基于磁通门技术的直流漏电流检测方法及实现[D].成都: 电子科技大学, 2016. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944

    WANG J. Design and implementation of DC leakage current detection on fluxgate technology[D]. Chengdu: University of Electronic Science and Technology of China, 2016.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D00990944
    MARTIN I M. Design and assessment of a low-frequency magnetic measurement system for eLISA[D]. Barcelona: Universitat Politecnica de Catalunya, Institute of Space Studies of Catalonia(IEEC), 2015.
    KOELLE D. High transition temperature superconducting quantum interference devices:basic concepts, fabrication and applications[J]. Journal of Electroceramics, 1999, 3(2):195-212. doi: 10.1023/A:1009903428803
    STUTZKE N A, RUSSEK S E, PAPPAS D P, et al.. Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors[J]. Journal of Applied Physics, 2005, 97(10):10Q107. doi: 10.1063/1.1861375
    MultiDimension Technology Co., MMLP57F TMR Linear Sensor[R]. Tech. Rep. 1.3, 2015.
    HONEYWELL, 1- and 2-Axis Magnetic Sensors HMC1001/1002/1021/1022[R]. Tech. Rep. 900248 Rev C, Honeywel, 2008.
    DUFAY B, SAEZ S, DOLABDJIAN C, et al.. Development of a high sensitivity giant magneto-impedance magnetometer:comparison with a commercial flux-gate[J]. IEEE Transactions on Magnetics, 2013, 49(1):85-88. doi: 10.1109/TMAG.2012.2219579
    UCHIYAMA T, HAMADA N, CAI C. Development of multicore magneto-impedance sensor for stable pico-Tesla resolution[C]. In Seventh International Conference on Sensing Technology, Wellington, New Zealand, 2013: 573-577.
    JANOSEK M, RIPKA P. PCB sensors in fluxgate magnetometer with controlled excitation[J]. Sensors and Actuators A:Physical, 2009, 151(2):141-144. doi: 10.1016/j.sna.2009.02.002
    CHONG L, JIAN L, ZHEN Y, et al.. Improved micro fluxgate sensor with double-layer Fe-based amorphous core[J]. Microsystem Technologies, 2013, 19(2):167-172. doi: 10.1007/s00542-012-1523-z
    LUONG V, CHANG C, JENG J, et al.. Reduction of low-frequency noise in tunneling-magnetoresistance sensors with a modulated magnetic shielding[J]. IEEE Transactions on Magnetics, 2014, 50(11):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2176b180fd5d45fbe3d3e544512d45ce
    SCHWINDT P D D, LINDSETH B, KNAPPE S, et al.. Chip-scale atomic magnetometer with improved sensitivity by use of the Mxtechnique[J]. Applied Physics Letters, 2007, 90(8):081102. doi: 10.1063/1.2709532
    MATEOS I, RAMOS-CASTRO J, LOBO A. Low-frequency noise characterization of a magnetic field monitoring system using an anisotropic magnetoresistance[J]. Sensors and Actuators A:Physical, 2015, 235:57-63. doi: 10.1016/j.sna.2015.09.021
    MATEOS I, SNCHEZ-M NGUEZ R, RAMOS-CASTRO J. Design of a CubeSat payload to test a magnetic measurement system for space-borne gravitational wave detectors[J]. Sensors and Actuators A:Physical, 2018, 273:311-316. doi: 10.1016/j.sna.2018.02.040
    MOHRI K, KOHSAWA T, KAWASHIMA K, et al.. Magneto-inductive effect(MI effect) in amorphous wire[J]. IEEE Transactions on Magnetics, 1992, 28:3150-3152. doi: 10.1109/20.179741
    MOHRI K, UCHIYAMA T, PANINA L V. Recent advances of micro magnetic sensors and sensing application[J]. Sensors and Actuators A:Physical, 1997, 59:1-8. doi: 10.1016/S0924-4247(97)80141-0
    ATKINSON D, SQUIRE P T, MAYLIN M G, et al.. An integrating magnetic sensor based on the giant magneto-impedance effect[J]. Sensors and Actuators A:Physical, 2000, 81(1-3):82-85. doi: 10.1016/S0924-4247(99)00091-6
    MOHRI K, UCHIYAMA T, SHEN L P, et al.. Amorphous wire and CMOS IC-based sensitive micro-magnetic sensors(MI sensor and SI sensor) for intelligent measurements and controls[J]. Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):351-356. doi: 10.1016/S0304-8853(02)00558-9
    NESTERUK K, KUZMINSKI M, LACHOWICZ H K. Novel magnetic field meter based on giant magneto-impedance(GMI) effect[J]. Sensors & Transducers Magazine, 2006, 65:515-520. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001653317
    YABUKAMI S, MAWATARI H, HORIKOSHI N, et al.. A design of highly sensitive GMI sensor[J]. Journal of Magnetism and Magnetic Materials, 2005, 290(2SI):1318-1321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=80edabc8ced1652650e2631a7506e70c
    HONKURA Y. Development of amorphous wire type MI sensors for automobile use[J]. Journal of Magnetism and Magnetic Materials, 2002, 249(1-2):375-381. doi: 10.1016/S0304-8853(02)00561-9
    NISHIBE Y, YAMADERA H, OHTA N, et al.. Thin film magnetic field sensor utilizing magneto impedance effect[J]. Sensors and Actuators A:Physical, 2000, 82(1-3):155-160. doi: 10.1016/S0924-4247(99)00327-1
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Article views (1331) PDF downloads(162) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint