Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
LI Zhuo, WANG You-liang, ZHENG Jian-hua, LI Ming-tao. Injection error analysis of space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 493-502. doi: 10.3788/CO.20191203.0493
Citation: LI Zhuo, WANG You-liang, ZHENG Jian-hua, LI Ming-tao. Injection error analysis of space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 493-502. doi: 10.3788/CO.20191203.0493

Injection error analysis of space gravitational wave detection

doi: 10.3788/CO.20191203.0493

the Strategy Priority Research Program of the Chinese Academy of Sciences XDA15014901

More Information
  • Corresponding author: LI Ming-tao, limingtao@nssc.ac.cn
  • Received Date: 01 Feb 2019
  • Rev Recd Date: 01 Apr 2019
  • Publish Date: 01 Jun 2019
  • In order to analyze the effect of injection error on gravitational wave detection, and keep arm length, breathing angle, arm length variation rate and distance to earth acceptable, the effect of injection error is investigated. First, the Monte-Carlo and CADET are tested and compared. CADET is proved to be correct. The effects of position and velocity error on constellations are researched with the CADET method. Experimental results indicate that the relative error between CADET and Monte-Carlo is less than 6%, and the calculated time of CADET is less than 1 min. Radial position error and tangential velocity error have a greater effect on constellation. If the position error of the three satellites are in same direction, maintaining stability is easier. The same is true for velocity error. A constellation can remain stable when position error is no more than 160 km and velocity error is no more than 3 cm/s. CADET is appropriate for injection error analysis because of its accuracy and high efficiency.


  • loading
  • [1]
    黄双林, 龚雪飞, 徐鹏, 等.空间引力波探测——天文学的一个新窗口[J].中国科学:物理学力学天文学, 2017, 47(1):010404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004

    HUANG SH L, GONG X F, XU P, et al.. Gravitational wave detection in space—a new window in astronomy[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2017, 47(1):010404.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cg201701004
    罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004

    LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/twxjz201501004
    王智, 马军, 李静秋.空间引力波探测计划-LISA系统设计要点[J].中国光学, 2015, 8(6):980-987. http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission:design highlights of LISA system[J]. Chinese Optics, 2015, 8(6):980-987.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9334.shtml
    LUO J, CHEN L SH, DUAN H Z. TianQin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    HU X CH, LI X H, WANG Y F, et al.. Fundamentals of the orbit and response for TianQin[J]. Classical and Quantum Gravity, 2018, 35(9):095008. doi: 10.1088/1361-6382/aab52f
    LUO Y ZH, YANG ZH. A review of uncertainty propagation in orbital mechanics[J]. Progress in Aerospace Sciences, 2017, 89:23-39. doi: 10.1016/j.paerosci.2016.12.002
    罗绪盛, 荆武兴, 高长生.火星探测捕获的误差传播分析[J].系统工程与电子技术, 2017, 39(7):1590-1595. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201707023

    LUO X SH, JING W X, GAO CH SH. Error propagation analysis of capture for Mars exploration[J]. Systems Engineering and Electronics, 2017, 39(7):1590-1595.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201707023
    夏炎.引力波探测计划LISA的任务轨道设计与优化[D].南京: 中国科学院紫金山天文台, 2009.

    XIA Y. Orbit design and optimization for the LISA gravitational wave observatory[D]. Nanjing: Purple Mountain Observatory, Chinese Academy of Sciences, 2009.(in Chinese)
    王有亮.卫星编队飞行相对轨迹优化与控制[D].北京: 中国科学院大学, 2018.

    WANG Y L. Relative trajectory optimization and control for satellite formation flying[D]. Beijing: University of Chinese Academy of Sciences, 2018.(in Chinese)
    陈磊, 韩蕾, 白显宗, 等.空间目标轨道力学与误差分析[M].北京:国防工业出版社, 2010.

    CHEN L, HAN L, BAI X Z, et al.. Orbital Dynamics and Error Analysis of Space Object[M]. Beijing:National Defense Industry Press, 2010.(in Chinese)
    张兵.大气层外动能拦截器末制导段性能研究[D].长沙: 国防科技大学, 2005.

    ZHANG B. End-game performance analysis of exo-atmospheric kinetic vehicle[D]. Changsha: National University of Defense Technology, 2005.(in Chinese)
    梁立波, 罗亚中, 杏建军, 等.基于协方差分析描述函数法的非线性交会精度分析[J].系统工程与电子技术, 2010, 32(9):1977-1981. doi: 10.3969/j.issn.1001-506X.2010.09.40

    LIANG L B, LUO Y ZH, XING J J, et al.. Precision analysis of nonlinear rendezvous by covariance analysis description equation technique[J]. Systems Engineering and Electronics, 2010, 32(9):1977-1981.(in Chinese). doi: 10.3969/j.issn.1001-506X.2010.09.40
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(7)

    Article views(2629) PDF downloads(170) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint