Volume 12 Issue 3
Jun.  2019
Turn off MathJax
Article Contents
FU Jiang-liang, GAN Qing-bo, ZHANG Yang, ZHAO Ke-xin, YUAN Hong. Design and trade-off study of proof masses for future spatial drag-free missions[J]. Chinese Optics, 2019, 12(3): 463-476. doi: 10.3788/CO.20191203.0463
Citation: FU Jiang-liang, GAN Qing-bo, ZHANG Yang, ZHAO Ke-xin, YUAN Hong. Design and trade-off study of proof masses for future spatial drag-free missions[J]. Chinese Optics, 2019, 12(3): 463-476. doi: 10.3788/CO.20191203.0463

Design and trade-off study of proof masses for future spatial drag-free missions

doi: 10.3788/CO.20191203.0463

National Natural Science Foundation of China 11303029

National Natural Science Foundation of China U1731131

Youth Innovation Promotion Association of Chinese Academy of Sciences 2018183

More Information
  • Corresponding author: GAN Qing-bo, E-mail:ganqingbo@nao.cas.cn
  • Received Date: 08 Nov 2018
  • Rev Recd Date: 04 Jan 2019
  • Publish Date: 01 Jun 2019
  • As the gravitational reference object for drag-free spacecrafts, the structural optimal design, choice of material and related configuration comparisons of proof masses could provide information for gravitational reference sensors' modular designs in future spatial drag-free missions. Firstly, the determinants and design criteria of proof mass shape are discussed. The model of gravitational coupling between a point mass source and a cylindrical proof mass is established in test of the equivalence principle experiment. The optimization procedure for the structural dimension of proof masses is deduced in detail and the effects on structural design induced by special considerations for proof mass constraint surfaces and their principal moments of inertia are analyzed. Secondly, the choice of material for proof masses is determined by maximizing scientific measurement signal intensity and/or minimizing non-gravitational acceleration disturbance. Results show that materials with low magnetic susceptibility, high density and a low thermal expansion coefficient could be suitable. Finally, a trade-off study of several configurations of proof masses utilized in future space gravitational wave detection is performed from the following aspects:acceleration noise performance, flight heritage, technology maturity and drag-free control complexity.


  • loading
  • [1]
    CONKLIN J W, BALAKRISHNAN K, BUCHMAN S, et al.. The drag-free CubeSat[C]. Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, AIAA, 2012.
    罗子人, 白姗, 边星, 等.空间激光干涉引力波探测[J].力学进展, 2013, 43(4):415-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201304003

    LUO Z R, BAI SH, BIAN X, et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4):415-447.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxjz201304003
    SUMNER T J. The STEP and GAUGE missions[J]. Space Science Reviews, 2009, 148(1-4):475-487. doi: 10.1007/s11214-009-9558-x
    EVERITT C W F, DEBRA D B, PARKINSON B W, et al.. Gravity Probe B:final results of a space experiment to test general relativity[J]. Physical Review Letters, 2011, 106(22):221101. doi: 10.1103/PhysRevLett.106.221101
    CIUFOLINI I, PAOLOZZI A, PAVLIS E C, et al.. A test of general relativity using the LARES and LAGEOS satellites and a GRACE earth gravity model[J]. The European Physical Journal C, 2016, 76(3):120. doi: 10.1140/epjc/s10052-016-3961-8
    REIGBER C, LVHR H, SCHWINTZER P. CHAMP mission status[J]. Advances in Space Research, 2002, 30(2):129-134. doi: 10.1016/S0273-1177(02)00276-4
    CHRISTOPHE B, BOULANGER D, FOULON B, et al.. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions[J]. Acta Astronautica, 2015, 117:1-7. doi: 10.1016/j.actaastro.2015.06.021
    DRINKWATER M R, FLOBERGHAGEN R, HAAGMANS R, et al.. VⅡ:CLOSING SESSION:GOCE: ESA's first earth explorer core mission[J]. Space Science Reviews, 2003, 108(1-2):419-432. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201606005
    BENDER P, BRILLET A, CIUFOLINI I, et al.. LISA pre-phase A report[R]. Hannover: LISA Study Team, 1998.
    LANGE B. Drag-free performance in a LISA mission with spherical proof masses[J]. Classical and Quantum Gravity, 2002, 19(7):1739-1743. doi: 10.1088/0264-9381/19/7/369
    LANGE B. Preliminary studies of spherical proof masses in LISA drag-free satellites[J]. Proceedings of SPIE, 2003, 4856:107-115. doi: 10.1117/12.458562
    CONNES A, DAMOUR T, FAYET P. A spherical gravitational monopoles[J]. Nuclear Physics B, 1997, 490(1-2):391-431. doi: 10.1016/S0550-3213(97)00041-2
    SUMNER T J, ANDERSON J, BLASER J P, et al.. STEP(satellite test of the equivalence principle)[J]. Advances in Space Research, 2007, 39(2):254-258. doi: 10.1016/j.asr.2006.09.019
    TOUBOUL P, RODRIGUES M, MÉTRIS G, et al.. MICROSCOPE, testing the equivalence principle in space[J]. Comptes Rendus de l'Académie des Sciences-Series IV-Physics, 2001, 2(9):1271-1286. doi: 10.1016/S1296-2147(01)01264-1
    NOBILI A M, COMANDI G L, DORAVARI S, et al.. "Galileo Galilei"(GG) a small satellite to test the equivalence principle of Galileo, Newton and Einstein[J]. Experimental Astronomy, 2009, 23(2):689-710. doi: 10.1007/s10686-008-9128-3
    罗子人, 钟敏, 边星, 等.地球重力场空间探测:回顾与展望[J].力学进展, 2014, 44:201408. doi: 10.6052/1000-0992-14-047

    LUO Z R, ZHONG M, BIAN X, et al.. Mapping earth's gravity in space:review and future perspective[J]. Advances in Mechanics, 2014, 44:201408.(in Chinese) doi: 10.6052/1000-0992-14-047
    SWANK A J. Gravitational mass attraction measurement for drag-free references[D]. Palo Alto: Stanford University, 2009.
    Staff of the Space Department, Staff of the Guidance, Control Laboratory. A satellite freed of all but gravitational forces:"TRIAD I"[J]. Journal of Spacecraft and Rockets, 1974, 11(9):637-644. doi: 10.2514/3.62146
    BENCZE W J, BRUMLEY R W, EGLINGTON M L, et al.. The Gravity Probe B electrostatic gyroscope suspension system GSS)[J]. Classical and Quantum Gravity, 2015, 32(22):224005. doi: 10.1088/0264-9381/32/22/224005
    RACCA G D, MCNAMARA P W. The LISA pathfinder mission[J]. Space Science Reviews, 2010, 151(1-3):159-181. doi: 10.1007/s11214-009-9602-x
    LOCKERBIE N A, XU X, VERYASKIN A V, et al.. Optimization of immunity to helium tidal influences for the STEP experiment test masses[J]. Classical and Quantum Gravity, 1994, 11(6):1575-1590. doi: 10.1088/0264-9381/11/6/021
    LOCKERBIEN A, XU X, VERYASKIN A V. The gravitational coupling between longitudinal segments of a hollow cylinder and an arbitrary gravitational source:relevance to the STEP experiment[J]. Classical and Quantum Gravity, 1996, 13(8):2041-2059. doi: 10.1088/0264-9381/13/8/004
    CONKLIN J W, ALLEN G, SUN K X, et al.. Determination of spherical test mass kinematics with modular gravitational reference sensor[J]. Journal of Guidance Control and Dynamics, 2008, 31(6):1700-1707. doi: 10.2514/1.34230
    DOLPHIN M D M. Polhode dynamics and gyroscope asymmetry analysis on Gravity Probe B using gyroscope position data[D]. Palo Alto: Stanford University, 2007.
    CONKLIN J W. Estimation of the mass center and dynamics of aspherical test mass for gravitational reference sensors[D]. Palo Alto: Stanford University, 2008.
    BLASER J P. Test mass material selection for equivalence principle experiments[J]. Classical and Quantum Gravity, 2001, 18(13):2515-2520. doi: 10.1088/0264-9381/18/13/314
    DANZMANN K, RVDIGER A. LISA technology-concept, status, prospects[J]. Classical and Quantum Gravity, 2003, 20(10):S1-S9. doi: 10.1088/0264-9381/20/10/301
    SWANSON P N, EVERITT C W F, LEE M C. The NASA/ESA MiniSTEP project[J]. Advances in Space Research, 2003, 32(7):1373-1377. doi: 10.1016/S0273-1177(03)90348-6
    OVERDUIN J, EVERITT F, MESTER J, et al.. The science case for STEP[J]. Advances in Space Research, 2009, 43(10):1532-1537. doi: 10.1016/j.asr.2009.02.012
    TOUBOUL P, MÉTRIS G, RODRIGUES M, et al.. MICROSCOPE mission:first results of a space test of the equivalence principle[J]. Physical Review Letters, 2017, 119(23):231101. doi: 10.1103/PhysRevLett.119.231101
    SCHUMAKER B L. Disturbance reduction requirements for LISA[J]. Classical and Quantum Gravity, 2003, 20(10):S239-S253. doi: 10.1088/0264-9381/20/10/327
    ZANONI C, ALFAUWAZ A, ALJADAAN A, et al.. The design of a drag-free CubeSat and the housing for its gravitational reference sensor[C]. Proceedings of the 2nd IAA Conference on University Satellites Missions and CubeSat Workshop, IAA, 2013.
    ALLEN G S. Optical sensor design for advanced drag-free satellites[D]. Palo Alto: Stanford University, 2009.
    BALAKRISHNAN K, SUN K X, ALFAUWAZ A, et al.. UV LED charge control of an electrically isolated proof mass in a gravitational reference sensor configuration at 255 nm[C]. Proceedings of the Latin America Optics and Photonics Conference 2014, OSA, 2014.
    LIPA J A, KEISER G M. The Stanford Relativity Gyroscope Experiment(B):Gyroscope Development[M]. New York:W. H. Freeman and Co., 1988, 1:587-699.
    AMARO-SEOANE P, AUDLEY H, BABAK S, et al.. Laser interferometer space antenna[J]. Tp.umu.se, 2017, 548(3):411. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225103032/
    BUCHMAN S, CONKLIN J W, BALAKRISHNAN K, et al.. LAGRANGE: laser gravitational-wave antenna in geodetic orbit[C]. Proceedings of the 9th LISA Symposium, LISA, 2012.
    ANDO M, KAWAMURA S, SETO N, et al.. DECIGO and DECIGO pathfinder[J]. Classical and Quantum Gravity, 2010, 27(8):084010. doi: 10.1088/0264-9381/27/8/084010
    HU W R, WU Y L. The Taiji program in space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5):685-686. doi: 10.1093/nsr/nwx116
    LUO J, CHEN L SH, DUAN H Z, et al.. Tianqin:a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
    CROWDER J, CORNISH N J. Beyond LISA:exploring future gravitational wave missions[J]. Physical Review D, 2005, 72(8):083005. doi: 10.1103/PhysRevD.72.083005
    SUN K X, BUCHMAN S, BYER R, et al.. Modular gravitational reference sensor development[J]. Journal of Physics:Conference Series, 2009, 154(1):012026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001528214
    GERARDI D, ALLEN G, CONKLIN J W, et al.. Invited article: advanced drag-free concepts for future space-based interferometers:acceleration noise performance[J]. Review of Scientific Instruments, 2014, 85(1):011301. doi: 10.1063/1.4862199
    TOUBOUL P, MÉTRIS G, SÉLIG H, et al.. Gravitation and geodesy with inertial sensors, from ground to space[J]. Aerospace Lab Journal, 2016(12):AL12-11. http://cn.bing.com/academic/profile?id=d6f2cd51d4d1251f9756ff701510ac9a&encoded=0&v=paper_preview&mkt=zh-cn
    DEBRA D B. Drag-free spacecraft as platforms for space missions and fundamental physics[J]. Classical and Quantum Gravity, 1997, 14(6):1549-1555. doi: 10.1088/0264-9381/14/6/026
    BUCHMAN S, EVERITT C W F, PARKINSON B, et al.. Gyroscopes and charge control for the relativity mission Gravity Probe B[J]. Advances in Space Research, 2000, 25(6):1181-1184. doi: 10.1016/S0273-1177(99)00983-7
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views(1970) PDF downloads(231) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint