Citation: | CHENG Ran, HAN Wen-biao. Highly accurate recalibrate waveforms for extreme-mass-ratio inspirals in effective-one-body frames[J]. Chinese Optics, 2019, 12(3): 441-454. doi: 10.3788/CO.20191203.0441 |
[1] |
ALEXANDER T. Stellar processes near the massive black hole in the Galactic center[J]. Phys. Rep., 2005, 419(2-3):65-142. doi: 10.1016/j.physrep.2005.08.002
|
[2] |
OLTEAN M, SOPUERTA C F, SPALLICCI A D A M. A frequency-domain implementation of the particle-without-particle approach to EMRIs[J]. J. Phys.: Conf. Ser., 2017, 840:012056. doi: 10.1088/1742-6596/840/1/012056
|
[3] |
KHAN F M, BERCZIK P, JUST A. Gravitational wave driven mergers and coalescence time of supermassive black holes[J]. Astronomy & Astrophysics, 2018, A71:615. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa30489-17
|
[4] |
GUO Z K, CAI R G, ZHANG Y ZH, et al.. Taiji program: gravitational-wave sources[R]. arXiv: 2018, 1807: 09495.
|
[5] |
LUO J, CHEN L SH, DUAN H Z, et al.. TianQin:a space-borne gravitational wave detector[J]. Class. Quantum Grav., 2016, 33(3):035010. doi: 10.1088/0264-9381/33/3/035010
|
[6] |
FINN L S, THORNE K S. Gravitational waves from a compact star in a circular, inspiral orbit, in the equatorial plane of a massive, spinning black hole, as observed by LISA[J]. Phys. Rev., 2000, 62:124021.
|
[7] |
CUTLER C, THORNE K S. Proceedings of general relativity and gravitation XVI[C]. BISHPO N T, Singapore, World Scientific, 2002.
|
[8] |
AMARO-SEOANE P, GAIR J R, FREITAG M, et al.. Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals[J]. Class. Quantum Grav., 2007, 24:R113-R169. doi: 10.1088/0264-9381/24/17/R01
|
[9] |
GAIR J R, BARACK L, CREIGHTON T, et al.. Event rate estimates for LISA extreme mass ratio capture sources[J]. Class. Quantum Grav., 2004, 21(20):S1595-S1606. doi: 10.1088/0264-9381/21/20/003
|
[10] |
HOPMAN C, ALEXANDER T. The effect of mass segregation on gravitational wave sources near massive black holes[J]. Astrophys. J. Letters, 2006, 645(2):L133-L136. doi: 10.1086/506273
|
[11] |
BARACK L, CARDOSO V, NISSANKE S, et al.. Black holes, gravitational waves and fundamental physics: a roadmap[R]. arXiv: 2018, 1806: 05195.
|
[12] |
REGGE T, WHEELER J A. Stability of a schwarzschild singularity[J]. Phys. Rev., 1957, 108(4):1063-1069. doi: 10.1103/PhysRev.108.1063
|
[13] |
TEUKOLSKY S A. Perturbations of a rotating black hole.I.fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations[J]. Astrophy. J., 1973, 185:635-647. doi: 10.1086/152444
|
[14] |
TEUKOLSKY S A, PRESS W H. Perturbations of a rotating black hole.Ⅲ-Interaction of the hole with gravitational and electromagnetic radiation[J]. Astrophy. J., 1974, 193:443-461. doi: 10.1086/153180
|
[15] |
GAIR J R, GLAMPEDAKIS K. Improved approximate inspirals of test bodies into Kerr black holes[J]. Phys. Rev., 2006, 73(6):064037. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_gr-qc%2f0510129
|
[16] |
BABAK S, FANG H, GAIR J R, et al.. "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole[J]. Phys. Rev D, 2007, 75(2):024005. doi: 10.1103/PhysRevD.75.024005
|
[17] |
BIERI L, YUNES N, GARFINKLE D. Gravitational waves and their mathematics[J]. AMS Notices, 2017, 64(7):693-708. http://d.old.wanfangdata.com.cn/Periodical/ttwlxb201105005
|
[18] |
GLAMPEDAKIS K, HUGHES S A, KENNEFICK D. Approximating the inspiral of test bodies into Kerr black holes[J]. Phys. Rev. D, 2002, 66(6):064005. doi: 10.1103/PhysRevD.66.064005
|
[19] |
TARACCHINI A, BUONANNO A, PAN Y, et al.. Effective-one-body model for black-hole binaries with generic mass ratios and spins[J]. Phys. Rev., 2014, 89(6):061502. http://cn.bing.com/academic/profile?id=80a15d23eb0574ac63e2a45335077a61&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
PVRRER M. Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass ratios and spins[J]. Phys. Rev., 2016, 93(6):064041. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f4c52cbda8f064bc19d0f1c07caa4882
|
[21] |
ABBOTT B P, ABBOTT R, ABBOTT T D, et al.. Binary black hole mergers in the first advanced LIGO observing run[J]. Phys. Rev X, 2016, 6(4):041015. http://cn.bing.com/academic/profile?id=8ec6754695a158fd92f5a1140f164b5e&encoded=0&v=paper_preview&mkt=zh-cn
|
[22] |
YUNES N, BUONANNO A, HUGHES S A, et al.. Modeling extreme mass ratio inspirals within the effective-one-body approach[J]. Phys. Rev. Lett., 2010, 104(9):091102. doi: 10.1103/PhysRevLett.104.091102
|
[23] |
YUNES N, BUONANNO A, HUGHES S A, et al.. Extreme mass-ratio inspirals in the effective-one-body approach:Quasicircular, equatorial orbits around a spinning black hole[J]. Phys. Rev., 2013, 83(10):109904. http://cn.bing.com/academic/profile?id=a705111239542c735dbcdff91e91ec44&encoded=0&v=paper_preview&mkt=zh-cn
|
[24] |
CUTLER C, FINN L S, POISSON E, et al.. Gravitational radiation from a particle in circular orbit around a black hole.Ⅱ.numerical results for the nonrotating case[J]. Phys. Rev., 1993, 47(3):1511-1518. http://cn.bing.com/academic/profile?id=c90daa571dd330e5e13ceadd6d70b4dc&encoded=0&v=paper_preview&mkt=zh-cn
|
[25] |
POISSON E. Gravitational radiation from a particle in circular orbit around a black hole.VI.accuracy of the post-Newtonian expansion[J]. Phys. Rev., 1995, 52(10):5719-5723. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000424877
|
[26] |
DAMOUR T, IYER B R, SATHYAPRAKASH B S. Improved filters for gravitational waves from inspiralling compact binaries[J]. Phys. Rev., 1998, 57(2):885-907. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_gr-qc%2f9708034
|
[27] |
PAN Y, BUONANNO A, FUJITA R, et al.. Post-Newtonian factorized multipolar waveforms for spinning, nonprecessing black-hole binaries[J]. Phys. Rev., 2011, 83(6):064003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e3bc916d09f4038a5540485f1157dfa9
|
[28] |
DAMOUR T, IYER B R, NAGAR A. Improved resummation of post-newtonian multipolar waveforms from circularized compact binaries[J]. Phys. Rev., 2009, 79(6):064004. http://cn.bing.com/academic/profile?id=aea49a5208f5b09d1bd34de2779decbd&encoded=0&v=paper_preview&mkt=zh-cn
|
[29] |
DAMOUR T, NAGAR A. Faithful effective-one-body waveforms of small-mass-ratio coalescing black hole binaries[J]. Phys. Rev., 2007, 76(6):064028. http://cn.bing.com/academic/profile?id=d26139e73be3451c896e6f296b981930&encoded=0&v=paper_preview&mkt=zh-cn
|
[30] |
TARACCHINI A, PAN Y, BUONANNO A, et al.. Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms[J]. Phys. Rev., 2012, 86(2):024011. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1202.0790
|
[31] |
BABAK S, TARACCHINI A, BUONANNO A. Validating the effective-one-body model of spinning, precessing binary black holes against numerical relativity[J]. Phys. Rev., 2017, 95(2):024010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000001348985
|
[32] |
JARANOWSKI P, KRLAK A. Gravitational-wave data analysis. formalism and sample applications:the gaussian case[J]. Living Reviews in Relativity, 2005, 8:3. doi: 10.12942/lrr-2005-3
|
[33] |
MINO Y, SASAKI M, SHIBAT A M, et al.. Chapter 1.Black Hole Perturbation[M]. Prog. Theor. Phys., 1997, 128:1-121. doi: 10.1143/PTPS.128.1
|
[34] |
HAN W B. Fast evolution and waveform generator for extreme-mass-ratio inspirals in equatorial-circular orbits[J]. Class. Quantum Grav., 2016, 33(6):065009. doi: 10.1088/0264-9381/33/6/065009
|
[35] |
HAN W B. Gravitational radiation from a spinning compact object around a supermassive Kerr black hole in circular orbit[J]. Phys. Rev., 2010, 82(8):084013. http://cn.bing.com/academic/profile?id=bbef8c7c49b592dd69cae7657d439b65&encoded=0&v=paper_preview&mkt=zh-cn
|
[36] |
HAN W B, CAO Z J. Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals[J]. Phys. Rev., 2011, 84(4):044014. https://core.ac.uk/display/2212356
|
[37] |
HAN W B. Gravitational waves from extreme-mass-ratio inspirals in equatorially eccentric orbits[J]. Internation Journal of Madern Physics D, 2014, 23(7):1450064. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e112ab13bc1735ac894e78d05f97e38a
|