Volume 12 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
YU Ye, LIN Wen-yan, PENG Xue-kang, JIN Yu, WU Zhi-jun, CHEN Yan. Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN[J]. Chinese Optics, 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382
Citation: YU Ye, LIN Wen-yan, PENG Xue-kang, JIN Yu, WU Zhi-jun, CHEN Yan. Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN[J]. Chinese Optics, 2019, 12(2): 382-394. doi: 10.3788/CO.20191202.0382

Weak microcavity effect in tandem white organic light-emitting diodes employing an effective charge-generation layer of Liq/Al/HAT-CN

doi: 10.3788/CO.20191202.0382
Funds:

the National Natural Science Foundation of China 61605049

the National Natural Science Foundation of China 11674111

More Information
  • Author Bio:

    YU Ye(1995—), female, Huai′an, Jiangsu, Master′s Degree Student, primarily engaged in OLED research. E-mail:xiaolvyezi95@163.com

    CHEN Yan(1981—), female, from Quanzhou, Fujian Province, Lecturer. In 2003, she obtained a bachelor′s degree in engineering from the Department of Electronic Information Engineering of Nanjing University of Posts and Telecommunications. In 2006, she obtained a master′s degree in Engineering from the School of Information Science and Technology of Peking University. Currently, she is mainly engaged in research on organic electroluminescent devices, organic photovoltaic devices and organic thin film transistors. E-mail:goldency@hqu.edu.cn

  • Corresponding author: CHEN Yan, E-mail:goldency@hqu.edu.cn
  • Received Date: 11 Jun 2018
  • Rev Recd Date: 13 Jul 2018
  • Publish Date: 01 Apr 2019
  • A charge generation layer(CGL) of Liq/Al/HAT-CN is used to fabricate the blue-yellow complementary tandem white organic light-emitting device. A group of dual-color devices are used to illustrate the working mechanism of CGL, and Liq/Al structure in the CGL is further studied. Under the current density of 10 mA/cm2, the operating voltage(8.3 V) and luminance(746 cd/m2) of the tandem device are both approximately the sum of those of blue device(4.2 V, 315 cd/m2) and yellow device(4.2 V, 426 cd/m2), respectively, confirming that the charge generating layer is effective. The maximum brightness of 11 420 cd/m2 is obtained at the current density of 240 mA/cm2, and the current efficiency and power efficiency are 7.2 cd/A and 2.6 lm/W under the luminance of 1 000 cd/m2, respectively. When driving current density increases from 10 mA/cm2 to 30 mA/cm2, the ratio of blue light in spectra increases by 5%, which means the stable performance of device. In view of the weak microcavity effect existing in the tandem device, we conducted in-depth research by optical simulation based on the microcavity theory. The simulation results are highly consistent with the actual spectra, demonstrating the accuracy of optical simulation calculation.

     

  • loading
  • [1]
    FURNO M, MEERHEIM R, HOFMANN S, et al.. Efficiency and rate of spontaneous emission in organic electroluminescent devices[J]. Physical Review B, 2012, 85(11):115205. doi: 10.1103/PhysRevB.85.115205
    [2]
    KIDO J, HONGAWA K, OKUYAMA K, et al.. White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes[J]. Applied Physics Letters, 1994, 64(7):815-817. doi: 10.1063/1.111023
    [3]
    REINEKE S, LINDNER F, SCHWARTZ G, et al.. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009, 459(7244):234-238. doi: 10.1038/nature08003
    [4]
    WANG Q, DING J Q, MA D G, et al.. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency: fabrication and emission-mechanism analysis[J]. Advanced Functional Materials, 2009, 19(1):84-95. doi: 10.1002/adfm.v19:1
    [5]
    LI Y, XU K, WEN X M, et al.. High general and special color rendering index white organic light-emitting device with bipolar homojunction emitting layers[J]. Organic Electronics, 2013, 14(8):1946-1951. doi: 10.1016/j.orgel.2013.04.027
    [6]
    CHIBA T, PU Y J, KIDO J. Organic Light-emitting Devices with Tandem Structure[M]. Photoluminescent Materials and Electroluminescent Devices. Cham: Springer, 2017: 357-373.
    [7]
    刘新辉, 杨健君, 于军胜.空穴阻挡中间层的加入对WOLEDs光谱稳定性的提高[J].发光学报, 2015, 36(10):1145-1149. http://d.old.wanfangdata.com.cn/Periodical/fgxb201510008

    LIU X H, YANG J J, YU J SH. Enhancement of WOLEDs spectral stability by adding hole-blocking interlayer[J]. Chinese Journal of Luminescence, 2015, 36(10):1145-1149.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201510008
    [8]
    PARK J W, SHIN D C, PARK S H. Large-area OLED lightings and their applications[J]. Semiconductor Science and Technology, 2011, 26(3):034002. doi: 10.1088/0268-1242/26/3/034002
    [9]
    CHEN P, XUE Q, XIE W F, et al.. Influence of interlayer on the performance of stacked white organic light-emitting devices[J]. Applied Physics Letters, 2009, 95(12):123307. doi: 10.1063/1.3234379
    [10]
    BAO Q Y, YANG J P, TANG J X, et al.. Interfacial electronic structures of WO3-based intermediate connectors in tandem organic light-emitting diodes[J]. Organic Electronics, 2010, 11(9):1578-1583. doi: 10.1016/j.orgel.2010.07.009
    [11]
    TSUTSUI T, TERAI M. Electric field-assisted bipolar charge spouting in organic thin-film diodes[J]. Applied Physics Letters, 2004, 84(3):440-442. doi: 10.1063/1.1640470
    [12]
    LIAO L S, SLUSAREK W K, HATWAR T K, et al.. Tandem organic light-emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector[J]. Advanced Materials, 2008, 20(2):324-329. doi: 10.1002/(ISSN)1521-4095
    [13]
    LIU J, WANG J, HUANG S J, et al.. A highly efficient, transparent and stable charge generation unit based on a p-doped monolayer[J]. Organic Electronics, 2013, 14(5):1337-1343. doi: 10.1016/j.orgel.2013.02.035
    [14]
    SOON M P, YOON H K, YEON J Y, et al.. Insertion of an organic interlayer for hole current enhancement in inverted organic light emitting devices[J]. Applied Physics Letters, 2010, 97(6):063308. doi: 10.1063/1.3478007
    [15]
    ZHENG X Y, WU Y ZH, SUN R G, et al.. Efficiency improvement of organic light-emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer[J]. Thin Solid Films, 2005, 478(1-2):252-255. doi: 10.1016/j.tsf.2004.08.020
    [16]
    SEO J H, LEE S J, SEO B M, et al.. White organic light-emitting diodes showing nearly 100% internal quantum efficiency[J]. Organic Electronics, 2010, 11(11):1759-1766. doi: 10.1016/j.orgel.2010.07.015
    [17]
    于瑶瑶, 喻叶, 林雯嫣, 等.高效率N掺杂有机电致发光器件的研制[J].发光学报, 2018, 39(3):315-321. http://d.old.wanfangdata.com.cn/Periodical/fgxb201803009

    YU Y Y, YU Y, LIN W Y, et al.. Highly efficient N-doped organic light-emitting devices[J]. Chinese Journal of Luminescence, 2018, 39(3):315-321.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201803009
    [18]
    BURROWS P E, KHALFIN V, GU G, et al.. Control of microcavity effects in full color stacked organic light emitting devices[J]. Applied Physics Letters, 1998, 73(4):435-437. doi: 10.1063/1.121891
    [19]
    张春玉, 王庆凯, 秦莉, 等.微腔有机电致发光器件角度依赖性的模拟与实验验证[J].发光学报, 2015, 36(4):454-458. http://d.old.wanfangdata.com.cn/Periodical/fgxb201504015

    ZHANG CH Y, WANG Q K, QIN L, et al.. Simulation and experimental verification for the angle dependence of the microcavity organic light emitting device[J]. Chinese Journal of Luminescence, 2015, 36(4):454-458.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201504015
    [20]
    POITRAS D, KUO C C, PY C. Design of high-contrast OLEDs with microcavity effect[J]. Optics Express, 2008, 16(11):8003-8015. doi: 10.1364/OE.16.008003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(3099) PDF downloads(214) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return