Volume 12 Issue 2
Apr.  2019
Turn off MathJax
Article Contents
YAN Chun-sheng. Research and development on Kramers-Kronig relationship[J]. Chinese Optics, 2019, 12(2): 179-198. doi: 10.3788/CO.20191202.0179
Citation: YAN Chun-sheng. Research and development on Kramers-Kronig relationship[J]. Chinese Optics, 2019, 12(2): 179-198. doi: 10.3788/CO.20191202.0179

Research and development on Kramers-Kronig relationship

Funds:

National Natural Science Foundation of China 11621101

National Natural Science Foundation of China 91233208

Fundamental Research Funds for the Central Universities from the Science and Technology Department of Zhejiang Province 2017FZA5001

More Information
  • Corresponding author: YAN Chun-sheng: E-mail:yancs@zju.edu.cn
  • Received Date: 11 Jun 2018
  • Rev Recd Date: 13 Jul 2018
  • Publish Date: 01 Apr 2019
  • The Kramers-Kronig(KK for short) relationship is a special case of Hilbert transformation, which describes the mathematical connection of square integrable function with causality between its real and imaginary parts. In this paper, the history, mathematics and physics essence of KK relationship are introduced. Its concrete form, meaning and application in electricity, magnetics, acoustics, optics, artificial medium and optical communication are presented, including its reflection and transmission functions, electric susceptibility, dielectric constant, refractive index, electrical conductivity, electrical impedance, magnetic permeability, atomic scattering factor, adiabatic compression coefficient, acoustic refractive index, single band time domain signal, space stealth medium and various nonlinear media and so on. The influence of truncation error on the calculation results of KK integral in practical applications is analyzed. Various integral limit extrapolation methods and various subtractive KK relationships based on anchor point are summarized, including single, multiple subtractive and differential multiple subtractive KK relationships.

     

  • loading
  • [1]
    KRONIG R D L. On the theory of dispersion of X-rays[J]. Journal of the Optical Society of America, 1926, 12(6):547-557. doi: 10.1364/JOSA.12.000547
    [2]
    KRAMERS H A. La diffusion de la lumiere par les atomes[J]. Atti del Congresso Internazionale dei Fisici, 1927, 2:545-557. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_astro-ph%2f0205136
    [3]
    BOHREN C F. What did Kramers and Kronig do and how did they do it?[J]. European Journal of Physics, 2010, 31(3):573-577. doi: 10.1088/0143-0807/31/3/014
    [4]
    GRAF U. Introduction to Hyperfunctions and Their Integral Transforms:An Applied and Computational Approach[M]. Basel:Birkhäuser, 2010.
    [5]
    汪璇, 曹万强.Hilbert变换及其基本性质分析[J].湖北大学学报(自然科学版), 2008, 30(1):53-55. doi: 10.3969/j.issn.1000-2375.2008.01.014

    WANG X, CAO W Q. The Hilbert transform and its characters[J]. Journal of Hubei University(Nature Science), 2008, 30(1):53-55.(in Chinese) doi: 10.3969/j.issn.1000-2375.2008.01.014
    [6]
    LUCARINI V, PEIPONEN K E, SAARINEN J J, et al.. Kramers-Kronig Relations in Optical Materials Research[M]. Berlin, Heidelberg:Springer-Verlag, 2005.
    [7]
    ARFKEN G B, WEBER H J. Mathematical Methods for Physicists[M]. 6th ed. Amsterdam:Elsevier Academic Press, 2005.
    [8]
    NUSSENZVEIG H M. Causality and Dispersion Relations[M]. Amsterdam:Elsevier Science, 1972.
    [9]
    ALTARELLI M, DEXTER D L, NUSSENZVEIG H M, et al.. Superconvergence and sum rules for the optical constants[J]. Physical Review B, 1972, 6(12):4502-4509. doi: 10.1103/PhysRevB.6.4502
    [10]
    ALTARELLI M, SMITH D Y. Superconvergence and sum rules for the optical constants:physical meaning, comparison with experiment, and generalization[J]. Physical Review B, 1974, 9(4):1290-1298. doi: 10.1103/PhysRevB.9.1290
    [11]
    LANDAU L D, LIFSHITZ E M. Electrodynamics of Continuous Media[M]. Oxford:Pergamon, 1960.
    [12]
    JAHODA F C. Fundamental absorption of barium oxide from its reflectivity spectrum[J]. Physical Review, 1957, 107(5):1261-1265. doi: 10.1103/PhysRev.107.1261
    [13]
    BODE H W. Network Analysis and Feedback Amplifier Design[M]. New York: D. Van Nostrand Company, Inc., 1945.
    [14]
    PHILIPP H R, TAFT E A. Optical constants of germanium in the region 1 to 10 eV[J]. Physical Review, 1959, 113(4):1002-1005. doi: 10.1103/PhysRev.113.1002
    [15]
    PHILIPP H R, TAFT E A. Kramers-Kronig analysis of reflectance data for diamond[J]. Physical Review, 1964, 136(5A):A1445-A1448. doi: 10.1103/PhysRev.136.A1445
    [16]
    ANDERMANN G, CARON A, DOWS D A. Kramers-Kronig dispersion analysis of infrared reflectance bands[J]. Journal of the Optical Society of America, 1965, 55(10):1211-1216.
    [17]
    牟媛, 吴振森, 张耿, 等.基于Kramers-Kronig关系建立金属太赫兹色散模型[J].物理学报, 2017, 66(12):120202. doi: 10.7498/aps.66.120202

    MOU Y, WU Z S, ZHANG G, et al.. Establishment of THz dispersion model of metals based on Kramers-Kronig relation[J]. Acta Physica Sinica, 2017, 66(12):120202.(in Chinese) doi: 10.7498/aps.66.120202
    [18]
    KOZIMA K, SUËTAKA W, SCHATZ P N. Optical constants of thin films by a Kramers-Kronig method[J]. Journal of the Optical Society of America, 1966, 56(2):181-184. doi: 10.1364/JOSA.56.000181
    [19]
    陈金金.Kramers-Kronig关系在光学中的应用[D].天津: 南开大学, 2011.

    CHEN J J. The applications of Kramers-Kronig relations in the optics[D]. Tianjin: Nankai University, 2011.(in Chinese)
    [20]
    PEIPONEN K E, ASAKURA T. Dispersion theory for two-phase layered-geometry nanocomposites[J]. Optical Review, 1999, 6(5):410-414. doi: 10.1007/s10043-999-0410-z
    [21]
    PEIPONEN K E, MARTTI O A, SAARINEN J, et al.. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles[J]. Optical Review, 2001, 8(1):9-17. doi: 10.1007/s10043-001-0009-5
    [22]
    BODE H W, .网络分析和反馈放大器设计[M].陈志刚, 译.北京: 人民邮电出版社, 1958.

    BODE H W. Network Analysis and Feedback Amplifier Design[M]. CHEN ZH G, trans. Beijing: People's Post and Telecommunications Press, 1958.(in Chinese)
    [23]
    GINER-SANZ J J, ORTEGA E M, PÉREZ-HERRANZ V. Monte carlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation[J]. International Journal of Hydrogen Energy, 2015, 40(34):11279-11293. doi: 10.1016/j.ijhydene.2015.03.135
    [24]
    VAN MEIRHAEGHE R L, DUTOIT E C, CARDON F, et al, . On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance[J]. Electrochimica Acta, 1975, 20:995-999. doi: 10.1016/0013-4686(75)85062-6
    [25]
    FANO W G, BOGGI S, RAZZITTE A C. Causality study and numerical response of the magnetic permeability as a function of the frequency of ferrites using Kramers-Kronig relations[J]. Physica B:Condensed Matter, 2008, 403(4):526-530. doi: 10.1016/j.physb.2007.08.218
    [26]
    GREINER F. Classical Electrodynamics[M]. New York:Springer, 1998.
    [27]
    PEIPONEN K E, LUCARINI V, VARTIAINEN E M, et al.. Kramers-Kronig relations and sum rules of negative refractive index media[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41(1):61-65. doi: 10.1140/epjb/e2004-00294-6
    [28]
    SZABÒ Z, PARK G H, HEDGE R, et al.. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10):2646-2653. doi: 10.1109/TMTT.2010.2065310
    [29]
    DING W W, SUN L Q, YI L Y, et al.. Dual-sideband heterodyne of dispersion spectroscopy based on phase-sensitive detection[J]. Applied Optics, 2016, 55(31):8698-8704. doi: 10.1364/AO.55.008698
    [30]
    STOCKMAN M I. Criterion for negative refraction with low optical losses from a fundamental principle of causality[J]. Physical Review Letters, 2007, 98(17):177404. doi: 10.1103/PhysRevLett.98.177404
    [31]
    MACKAY T G, LAKHTAKIA A. Comment on "criterion for negative refraction with low optical losses from a fundamental principle of causality"[J]. Physical Review Letters, 2007, 99(18):189701. doi: 10.1103/PhysRevLett.99.189701
    [32]
    彭文胜, 王建中.光电导效应及其应用探究[J].高等函授学报(自然科学版), 2007, 21(6):32-35. doi: 10.3969/j.issn.1006-7353.2007.06.012

    PENG W SH, WANG J ZH. Photoconductivity effect and its application[J]. Journal of Higher Correspondence Education(Natural Sciences), 2007, 21(6):32-35.(in Chinese) doi: 10.3969/j.issn.1006-7353.2007.06.012
    [33]
    OPPENEER P M, MAURER T, STICHT J, et al.. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals:Fe and Ni[J]. Physical Review B, 1992, 45(19):10924-10933. doi: 10.1103/PhysRevB.45.10924
    [34]
    WANG C S, CALLAWAY J. Band structure of nickel:Spin-orbit coupling, the Fermi surface, and the optical conductivity[J]. Physical Review B, 1974, 9(11):4897-4907. doi: 10.1103/PhysRevB.9.4897
    [35]
    RATHGEN H, KATSNELSON M I. Symmetry assumptions, kramers kronig transformation and analytical continuation in Ab initio calculations of optical conductivities[J]. Physica Scripta, 2004, T109:170-174. doi: 10.1238/Physica.Topical.109a00170
    [36]
    (美)阿特伍德D T.软X射线与极紫外辐射的原理和应用[M].张杰, 译.北京: 科学出版社, 2003.

    ATTWOOD D T. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications[M]. ZHANG J, trans. Beijing: Science Press, 2003.(in Chinese)
    [37]
    STONE K H, VALVIDARES S M, KORTRIGHT J B. Kramers-Kronig constrained modeling of soft X-ray reflectivity spectra:Obtaining depth resolution of electronic and chemical structure[J]. Physical Review B, 2012, 86(2):024102. doi: 10.1103/PhysRevB.86.024102
    [38]
    MANGULIS V. Kramers-Kronig or Dispersion Relations in Acoustics relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1964, 36(1):211-212. doi: 10.1121/1.1918936
    [39]
    O'DONNELL M, JAYNES E T, MILLER J G. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1981, 69(3):696-701. doi: 10.1121/1.385566
    [40]
    ÁLVAREZ F J, KUC R. Dispersion relation for air via Kramers-Kronig analysis[J]. The Journal of the Acoustical Society of America, 2008, 124(2):EL57-EL61. doi: 10.1121/1.2947631
    [41]
    YE ZH. Acoustic dispersion and attenuation in many spherical scatterer systems and the Kramers-Kronig relations[J]. Journal of the Acoustical Society of AmericaJ, 1997, 101(6):3299-3305. doi: 10.1121/1.418311
    [42]
    BOYD R W. Nonlinear Optics[M]. 2nd ed. London: Academic, 2003.
    [43]
    LI CH. Nonlinear Optics:Principles and Applications[M]. Singapore:Springer, 2017.
    [44]
    HUTCHINGS D C, SHEIK-BAHAE M, HAGAN D J, et al.. Kramers-Kronig relations in nonlinear optics[J]. Optical and Quantum Electronics, 1992, 24(1):1-30. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0302080
    [45]
    BASSANI F, SCANDOLO S. Dispersion relations and sum rules in nonlinear optics[J]. Physical Review B, 1991, 44(16):8446-8453. doi: 10.1103/PhysRevB.44.8446
    [46]
    PEIPONEN K E. Sum rules for the nonlinear susceptibilities in the case of sum frequency generation[J]. Physical Review B, 1987, 35(8):4116-4117. doi: 10.1103/PhysRevB.35.4116
    [47]
    BASSANI F, LUCARINI V. General properties of optical harmonic generation from a simple oscillator model[J]. Nuovo Cimento D, 1998, 20(7-8):1117-1125. doi: 10.1007/BF03185520
    [48]
    BASSANI F, LUCARINI V. Asymptotic behaviour and general properties of harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 17(4):567-573. doi: 10.1007/PL00011069
    [49]
    SAARINEN J J. Sum rules for arbitrary-order harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2002, 30(4):551-557. doi: 10.1140/epjb/e2002-00413-5
    [50]
    SHEIKBAHAE M, HUTCHINGS D C, HAGAN D J, et al.. Dispersion of bound electronic nonlinear refraction in solids[J]. IEEE Journal of Quantum Electronics, 1991, 27(6):1296-1309. doi: 10.1109/3.89946
    [51]
    MILLER D A B, SEATON C T, PRISE M E, et al.. Band-gap-resonant nonlinear refraction in Ⅲ-V semiconductors[J]. Physical Review Letters, 1981, 47(3):197-200. doi: 10.1103/PhysRevLett.47.197
    [52]
    CHEMLA D S, MILLER D A B, SMITH P W, et al.. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures[J]. IEEE Journal of Quantum Electronics, 1984, QE-20(3):265-275.
    [53]
    LEE Y H, CHAVEZ-PIRSON A, KOCH S W, et al.. Room-temperature optical nonlinearities in GaAs[J]. Physical Review Letters, 1986, 57(19):2446-2449. doi: 10.1103/PhysRevLett.57.2446
    [54]
    RIDENER JR F L, GOOD JR R H. Dispersion-relations for third-degree nonlinear-systems[J]. Physical Review B, 1974, 10(12):4980-4987. doi: 10.1103/PhysRevB.10.4980
    [55]
    RIDENER JR F L, GOOD JR R H. Dispersion-relations for nonlinear-systems of arbitrary degree[J]. Physical Review B, 1975, 11(8):2768-2770. doi: 10.1103/PhysRevB.11.2768
    [56]
    KADOR L. Kramers-Kronig relations in nonlinear optics[J]. Applied Physics Letters, 1995, 66(22):2938-2939. doi: 10.1063/1.114235
    [57]
    KOGAN S M. On the electrodynamics of weakly nonlinear media[J]. Soviet Physics Jetp, 1963, 16(1):217-219.
    [58]
    BOWLDEN H J, WILMSHURST J K. Evaluation of the one-angle reflection technique for the determination of optical constants[J]. Journal of the Optical Society of America, 1963, 53(9):1073-1078. doi: 10.1364/JOSA.53.001073
    [59]
    MYHRE C E L, CHRISTENSEN D H, NICOLAISEN F M, et al.. Spectroscopic study of aqueous H2SO4 at different temperatures and compositions:variations in dissociation and optical properties[J]. The Journal of Physical Chemistry A, , 2003, 107(12):1979-1991. doi: 10.1021/jp026576n
    [60]
    HERBIN H, PUJOL O, HUBERT P, et al.. New approach for the determination of aerosol refractive indices-Part I:theoretical bases and numerical methodology[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200:311-319. doi: 10.1016/j.jqsrt.2017.03.005
    [61]
    GOTTLIEB M. Optical properties of lithium fluoride in the infrared[J]. Journal of the Optical Society of America, 1960, 50(4):343-349. doi: 10.1364/JOSA.50.000343
    [62]
    THOMAS D G, HOPFIELD J J. Exciton spectrum of cadmium sulfide[J]. Physical Review, 1959, 116(3):573-582. doi: 10.1103/PhysRev.116.573
    [63]
    SPITZER W G, KLEINMAN D A. Infrared lattice bands of quartz[J]. Physical Review, 1961, 121(5):1324-1335. doi: 10.1103/PhysRev.121.1324
    [64]
    SON H J, CHOI D H, PARK J S. Improved thickness estimation of liquid water using Kramers-Kronig relations for determination of precise optical parameters in terahertz transmission spectroscopy[J]. Optics Express, 2017, 25(4):4509-4518. doi: 10.1364/OE.25.004509
    [65]
    BACHRACH R Z, BROWN F C. Exciton-optical properties of tlbr and tlcl[J]. Physical Review B, 1970, 1(2):818-831. doi: 10.1103/PhysRevB.1.818
    [66]
    AHRENKIE R K. Modified Kramers-Kronig analysis of optical spectra[J]. Journal of the Optical Society of America, 1971, 61(12):1651-1655. doi: 10.1364/JOSA.61.001651
    [67]
    LUCARINI V, SAARINEN J J, PEIPONEN K E. Multiply subtractive Kramers-Krönig relations for arbitrary-order harmonic generation susceptibilities[J]. Optics Communications, 2003, 218(4-6):409-414. doi: 10.1016/S0030-4018(03)01259-8
    [68]
    PALMER K F, WILLIAMS M Z, BUDDE B A. Multiply subtractive Kramers-Kronig analysis of optical data[J]. Applied Optics, 1998, 37(13):2660-2673. doi: 10.1364/AO.37.002660
    [69]
    GRANOT E, BEN-ADERET Y, STERNKLAR S. Differential multiply subtractive Kramers-Kronig relations[J]. Journal of the Optical Society of America B, 2008, 25(4):609-613. doi: 10.1364/JOSAB.25.000609
    [70]
    BEN-ADERET Y, GRANOT E, STERNKLAR S, et al.. Spectral analysis of a one-dimensional scattering medium with the differential multiply subtractive Kramers-Kronig method[J]. Journal of the Optical Society of America B, 2009, 26(1):125-128. doi: 10.1364/JOSAB.26.000125
    [71]
    HORSLEY S A R, ARTONI M, LA ROCCA G C. Spatial Kramers-Kronig relations and the reflection of waves[J]. Nature Photonics, 2015, 9(7):436-439. doi: 10.1038/nphoton.2015.106
    [72]
    LONGHI S. Wave reflection in dielectric media obeying spatial Kramers-Kronig relations[J]. Europhysics Letters, 2015, 112(6):64001. doi: 10.1209/0295-5075/112/64001
    [73]
    KOBER H. A note on Hilbert's operator[J]. Bulletin of the American Mathematical Society, 1942, 48(6):421-427. doi: 10.1090/S0002-9904-1942-07688-9
    [74]
    LONGHI S. Bidirectional invisibility in Kramers-Kronig optical media[J]. Optics Letters, 2016, 41(16):3727-3730. doi: 10.1364/OL.41.003727
    [75]
    PHILBIN T G. All-frequency reflectionlessness[J]. Journal of Optics, 2016, 18(1):01LT01. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30019534296ebe105e4635bcfaa2d372
    [76]
    KING C G, HORSLEY S A R, PHILBIN T G. Zero reflection and transmission in graded index media[J]. Journal of Optics, 2017, 19(8):085603. doi: 10.1088/2040-8986/aa7783
    [77]
    YE D X, CAO C, ZHOU T Y, et al.. Observation of reflectionless absorption due to spatial Kramers-Kronig profile[J]. Nature Communications, 2017, 8(1):51. doi: 10.1038/s41467-017-00123-4
    [78]
    MECOZZI A, ANTONELLI C, SHTAIF M. Kramers-Kronig coherent receiver[J]. Optica, 2016, 3(11):1220-1227. doi: 10.1364/OPTICA.3.001220
    [79]
    ANTONELLI C, MECOZZI A, SHTAIF M. Kramers-Kronig PAM transceiver and two-sided polarization-multiplexed Kramers-Kronig transceiver[J]. Journal of Lightwave Technology, 2018, 36(2):468-475. doi: 10.1109/JLT.2018.2796306
    [80]
    CHEN X, ANTONELLI C, CHANDRASEKHAR S, et al.. Kramers-Kronig receivers for 100-km datacenter interconnects[J]. Journal of Lightwave Technology, 2018, 36(1):79-89. doi: 10.1109/JLT.2018.2793460
    [81]
    HOANG T M, SOWAILEM M Y S, ZHUGE Q B, et al.. Single wavelength 480 Gb/s direct detection over 80 km SSMF enabled by Stokes vector Kramers -Kronig transceiver[J]. Optics Express, 2017, 25(26):33534-33542. doi: 10.1364/OE.25.033534
    [82]
    汪小佳, 朱仁传, 洪亮.有航速Kramers-Kronig关系及浮体运动的间接时域法[J].中国造船, 2018, 59(2):9-23. doi: 10.3969/j.issn.1000-4882.2018.02.002

    WANG X J, ZHU R CH, HONG L. Kramers-Kronig relations and frequency to time-domain transformation method for time domain calculation of floating body with forward speed[J]. Shipbuilding of China, 2018, 59(2):9-23.(in Chinese) doi: 10.3969/j.issn.1000-4882.2018.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(7106) PDF downloads(1110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return