Citation: | YAN Chun-sheng. Research and development on Kramers-Kronig relationship[J]. Chinese Optics, 2019, 12(2): 179-198. doi: 10.3788/CO.20191202.0179 |
[1] |
KRONIG R D L. On the theory of dispersion of X-rays[J]. Journal of the Optical Society of America, 1926, 12(6):547-557. doi: 10.1364/JOSA.12.000547
|
[2] |
KRAMERS H A. La diffusion de la lumiere par les atomes[J]. Atti del Congresso Internazionale dei Fisici, 1927, 2:545-557. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_astro-ph%2f0205136
|
[3] |
BOHREN C F. What did Kramers and Kronig do and how did they do it?[J]. European Journal of Physics, 2010, 31(3):573-577. doi: 10.1088/0143-0807/31/3/014
|
[4] |
GRAF U. Introduction to Hyperfunctions and Their Integral Transforms:An Applied and Computational Approach[M]. Basel:Birkhäuser, 2010.
|
[5] |
汪璇, 曹万强.Hilbert变换及其基本性质分析[J].湖北大学学报(自然科学版), 2008, 30(1):53-55. doi: 10.3969/j.issn.1000-2375.2008.01.014
WANG X, CAO W Q. The Hilbert transform and its characters[J]. Journal of Hubei University(Nature Science), 2008, 30(1):53-55.(in Chinese) doi: 10.3969/j.issn.1000-2375.2008.01.014
|
[6] |
LUCARINI V, PEIPONEN K E, SAARINEN J J, et al.. Kramers-Kronig Relations in Optical Materials Research[M]. Berlin, Heidelberg:Springer-Verlag, 2005.
|
[7] |
ARFKEN G B, WEBER H J. Mathematical Methods for Physicists[M]. 6th ed. Amsterdam:Elsevier Academic Press, 2005.
|
[8] |
NUSSENZVEIG H M. Causality and Dispersion Relations[M]. Amsterdam:Elsevier Science, 1972.
|
[9] |
ALTARELLI M, DEXTER D L, NUSSENZVEIG H M, et al.. Superconvergence and sum rules for the optical constants[J]. Physical Review B, 1972, 6(12):4502-4509. doi: 10.1103/PhysRevB.6.4502
|
[10] |
ALTARELLI M, SMITH D Y. Superconvergence and sum rules for the optical constants:physical meaning, comparison with experiment, and generalization[J]. Physical Review B, 1974, 9(4):1290-1298. doi: 10.1103/PhysRevB.9.1290
|
[11] |
LANDAU L D, LIFSHITZ E M. Electrodynamics of Continuous Media[M]. Oxford:Pergamon, 1960.
|
[12] |
JAHODA F C. Fundamental absorption of barium oxide from its reflectivity spectrum[J]. Physical Review, 1957, 107(5):1261-1265. doi: 10.1103/PhysRev.107.1261
|
[13] |
BODE H W. Network Analysis and Feedback Amplifier Design[M]. New York: D. Van Nostrand Company, Inc., 1945.
|
[14] |
PHILIPP H R, TAFT E A. Optical constants of germanium in the region 1 to 10 eV[J]. Physical Review, 1959, 113(4):1002-1005. doi: 10.1103/PhysRev.113.1002
|
[15] |
PHILIPP H R, TAFT E A. Kramers-Kronig analysis of reflectance data for diamond[J]. Physical Review, 1964, 136(5A):A1445-A1448. doi: 10.1103/PhysRev.136.A1445
|
[16] |
ANDERMANN G, CARON A, DOWS D A. Kramers-Kronig dispersion analysis of infrared reflectance bands[J]. Journal of the Optical Society of America, 1965, 55(10):1211-1216.
|
[17] |
牟媛, 吴振森, 张耿, 等.基于Kramers-Kronig关系建立金属太赫兹色散模型[J].物理学报, 2017, 66(12):120202. doi: 10.7498/aps.66.120202
MOU Y, WU Z S, ZHANG G, et al.. Establishment of THz dispersion model of metals based on Kramers-Kronig relation[J]. Acta Physica Sinica, 2017, 66(12):120202.(in Chinese) doi: 10.7498/aps.66.120202
|
[18] |
KOZIMA K, SUËTAKA W, SCHATZ P N. Optical constants of thin films by a Kramers-Kronig method[J]. Journal of the Optical Society of America, 1966, 56(2):181-184. doi: 10.1364/JOSA.56.000181
|
[19] |
陈金金.Kramers-Kronig关系在光学中的应用[D].天津: 南开大学, 2011.
CHEN J J. The applications of Kramers-Kronig relations in the optics[D]. Tianjin: Nankai University, 2011.(in Chinese)
|
[20] |
PEIPONEN K E, ASAKURA T. Dispersion theory for two-phase layered-geometry nanocomposites[J]. Optical Review, 1999, 6(5):410-414. doi: 10.1007/s10043-999-0410-z
|
[21] |
PEIPONEN K E, MARTTI O A, SAARINEN J, et al.. Dispersion theory of liquids containing optically linear and nonlinear Maxwell Garnett nanoparticles[J]. Optical Review, 2001, 8(1):9-17. doi: 10.1007/s10043-001-0009-5
|
[22] |
BODE H W, .网络分析和反馈放大器设计[M].陈志刚, 译.北京: 人民邮电出版社, 1958.
BODE H W. Network Analysis and Feedback Amplifier Design[M]. CHEN ZH G, trans. Beijing: People's Post and Telecommunications Press, 1958.(in Chinese)
|
[23] |
GINER-SANZ J J, ORTEGA E M, PÉREZ-HERRANZ V. Monte carlo based quantitative Kramers-Kronig test for PEMFC impedance spectrum validation[J]. International Journal of Hydrogen Energy, 2015, 40(34):11279-11293. doi: 10.1016/j.ijhydene.2015.03.135
|
[24] |
VAN MEIRHAEGHE R L, DUTOIT E C, CARDON F, et al, . On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance[J]. Electrochimica Acta, 1975, 20:995-999. doi: 10.1016/0013-4686(75)85062-6
|
[25] |
FANO W G, BOGGI S, RAZZITTE A C. Causality study and numerical response of the magnetic permeability as a function of the frequency of ferrites using Kramers-Kronig relations[J]. Physica B:Condensed Matter, 2008, 403(4):526-530. doi: 10.1016/j.physb.2007.08.218
|
[26] |
GREINER F. Classical Electrodynamics[M]. New York:Springer, 1998.
|
[27] |
PEIPONEN K E, LUCARINI V, VARTIAINEN E M, et al.. Kramers-Kronig relations and sum rules of negative refractive index media[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2004, 41(1):61-65. doi: 10.1140/epjb/e2004-00294-6
|
[28] |
SZABÒ Z, PARK G H, HEDGE R, et al.. A unique extraction of metamaterial parameters based on Kramers-Kronig relationship[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(10):2646-2653. doi: 10.1109/TMTT.2010.2065310
|
[29] |
DING W W, SUN L Q, YI L Y, et al.. Dual-sideband heterodyne of dispersion spectroscopy based on phase-sensitive detection[J]. Applied Optics, 2016, 55(31):8698-8704. doi: 10.1364/AO.55.008698
|
[30] |
STOCKMAN M I. Criterion for negative refraction with low optical losses from a fundamental principle of causality[J]. Physical Review Letters, 2007, 98(17):177404. doi: 10.1103/PhysRevLett.98.177404
|
[31] |
MACKAY T G, LAKHTAKIA A. Comment on "criterion for negative refraction with low optical losses from a fundamental principle of causality"[J]. Physical Review Letters, 2007, 99(18):189701. doi: 10.1103/PhysRevLett.99.189701
|
[32] |
彭文胜, 王建中.光电导效应及其应用探究[J].高等函授学报(自然科学版), 2007, 21(6):32-35. doi: 10.3969/j.issn.1006-7353.2007.06.012
PENG W SH, WANG J ZH. Photoconductivity effect and its application[J]. Journal of Higher Correspondence Education(Natural Sciences), 2007, 21(6):32-35.(in Chinese) doi: 10.3969/j.issn.1006-7353.2007.06.012
|
[33] |
OPPENEER P M, MAURER T, STICHT J, et al.. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals:Fe and Ni[J]. Physical Review B, 1992, 45(19):10924-10933. doi: 10.1103/PhysRevB.45.10924
|
[34] |
WANG C S, CALLAWAY J. Band structure of nickel:Spin-orbit coupling, the Fermi surface, and the optical conductivity[J]. Physical Review B, 1974, 9(11):4897-4907. doi: 10.1103/PhysRevB.9.4897
|
[35] |
RATHGEN H, KATSNELSON M I. Symmetry assumptions, kramers kronig transformation and analytical continuation in Ab initio calculations of optical conductivities[J]. Physica Scripta, 2004, T109:170-174. doi: 10.1238/Physica.Topical.109a00170
|
[36] |
(美)阿特伍德D T.软X射线与极紫外辐射的原理和应用[M].张杰, 译.北京: 科学出版社, 2003.
ATTWOOD D T. Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications[M]. ZHANG J, trans. Beijing: Science Press, 2003.(in Chinese)
|
[37] |
STONE K H, VALVIDARES S M, KORTRIGHT J B. Kramers-Kronig constrained modeling of soft X-ray reflectivity spectra:Obtaining depth resolution of electronic and chemical structure[J]. Physical Review B, 2012, 86(2):024102. doi: 10.1103/PhysRevB.86.024102
|
[38] |
MANGULIS V. Kramers-Kronig or Dispersion Relations in Acoustics relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1964, 36(1):211-212. doi: 10.1121/1.1918936
|
[39] |
O'DONNELL M, JAYNES E T, MILLER J G. Kramers-Kronig relationship between ultrasonic attenuation and phase velocity[J]. The Journal of the Acoustical Society of America, 1981, 69(3):696-701. doi: 10.1121/1.385566
|
[40] |
ÁLVAREZ F J, KUC R. Dispersion relation for air via Kramers-Kronig analysis[J]. The Journal of the Acoustical Society of America, 2008, 124(2):EL57-EL61. doi: 10.1121/1.2947631
|
[41] |
YE ZH. Acoustic dispersion and attenuation in many spherical scatterer systems and the Kramers-Kronig relations[J]. Journal of the Acoustical Society of AmericaJ, 1997, 101(6):3299-3305. doi: 10.1121/1.418311
|
[42] |
BOYD R W. Nonlinear Optics[M]. 2nd ed. London: Academic, 2003.
|
[43] |
LI CH. Nonlinear Optics:Principles and Applications[M]. Singapore:Springer, 2017.
|
[44] |
HUTCHINGS D C, SHEIK-BAHAE M, HAGAN D J, et al.. Kramers-Kronig relations in nonlinear optics[J]. Optical and Quantum Electronics, 1992, 24(1):1-30. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0302080
|
[45] |
BASSANI F, SCANDOLO S. Dispersion relations and sum rules in nonlinear optics[J]. Physical Review B, 1991, 44(16):8446-8453. doi: 10.1103/PhysRevB.44.8446
|
[46] |
PEIPONEN K E. Sum rules for the nonlinear susceptibilities in the case of sum frequency generation[J]. Physical Review B, 1987, 35(8):4116-4117. doi: 10.1103/PhysRevB.35.4116
|
[47] |
BASSANI F, LUCARINI V. General properties of optical harmonic generation from a simple oscillator model[J]. Nuovo Cimento D, 1998, 20(7-8):1117-1125. doi: 10.1007/BF03185520
|
[48] |
BASSANI F, LUCARINI V. Asymptotic behaviour and general properties of harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2000, 17(4):567-573. doi: 10.1007/PL00011069
|
[49] |
SAARINEN J J. Sum rules for arbitrary-order harmonic generation susceptibilities[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2002, 30(4):551-557. doi: 10.1140/epjb/e2002-00413-5
|
[50] |
SHEIKBAHAE M, HUTCHINGS D C, HAGAN D J, et al.. Dispersion of bound electronic nonlinear refraction in solids[J]. IEEE Journal of Quantum Electronics, 1991, 27(6):1296-1309. doi: 10.1109/3.89946
|
[51] |
MILLER D A B, SEATON C T, PRISE M E, et al.. Band-gap-resonant nonlinear refraction in Ⅲ-V semiconductors[J]. Physical Review Letters, 1981, 47(3):197-200. doi: 10.1103/PhysRevLett.47.197
|
[52] |
CHEMLA D S, MILLER D A B, SMITH P W, et al.. Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures[J]. IEEE Journal of Quantum Electronics, 1984, QE-20(3):265-275.
|
[53] |
LEE Y H, CHAVEZ-PIRSON A, KOCH S W, et al.. Room-temperature optical nonlinearities in GaAs[J]. Physical Review Letters, 1986, 57(19):2446-2449. doi: 10.1103/PhysRevLett.57.2446
|
[54] |
RIDENER JR F L, GOOD JR R H. Dispersion-relations for third-degree nonlinear-systems[J]. Physical Review B, 1974, 10(12):4980-4987. doi: 10.1103/PhysRevB.10.4980
|
[55] |
RIDENER JR F L, GOOD JR R H. Dispersion-relations for nonlinear-systems of arbitrary degree[J]. Physical Review B, 1975, 11(8):2768-2770. doi: 10.1103/PhysRevB.11.2768
|
[56] |
KADOR L. Kramers-Kronig relations in nonlinear optics[J]. Applied Physics Letters, 1995, 66(22):2938-2939. doi: 10.1063/1.114235
|
[57] |
KOGAN S M. On the electrodynamics of weakly nonlinear media[J]. Soviet Physics Jetp, 1963, 16(1):217-219.
|
[58] |
BOWLDEN H J, WILMSHURST J K. Evaluation of the one-angle reflection technique for the determination of optical constants[J]. Journal of the Optical Society of America, 1963, 53(9):1073-1078. doi: 10.1364/JOSA.53.001073
|
[59] |
MYHRE C E L, CHRISTENSEN D H, NICOLAISEN F M, et al.. Spectroscopic study of aqueous H2SO4 at different temperatures and compositions:variations in dissociation and optical properties[J]. The Journal of Physical Chemistry A, , 2003, 107(12):1979-1991. doi: 10.1021/jp026576n
|
[60] |
HERBIN H, PUJOL O, HUBERT P, et al.. New approach for the determination of aerosol refractive indices-Part I:theoretical bases and numerical methodology[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 200:311-319. doi: 10.1016/j.jqsrt.2017.03.005
|
[61] |
GOTTLIEB M. Optical properties of lithium fluoride in the infrared[J]. Journal of the Optical Society of America, 1960, 50(4):343-349. doi: 10.1364/JOSA.50.000343
|
[62] |
THOMAS D G, HOPFIELD J J. Exciton spectrum of cadmium sulfide[J]. Physical Review, 1959, 116(3):573-582. doi: 10.1103/PhysRev.116.573
|
[63] |
SPITZER W G, KLEINMAN D A. Infrared lattice bands of quartz[J]. Physical Review, 1961, 121(5):1324-1335. doi: 10.1103/PhysRev.121.1324
|
[64] |
SON H J, CHOI D H, PARK J S. Improved thickness estimation of liquid water using Kramers-Kronig relations for determination of precise optical parameters in terahertz transmission spectroscopy[J]. Optics Express, 2017, 25(4):4509-4518. doi: 10.1364/OE.25.004509
|
[65] |
BACHRACH R Z, BROWN F C. Exciton-optical properties of tlbr and tlcl[J]. Physical Review B, 1970, 1(2):818-831. doi: 10.1103/PhysRevB.1.818
|
[66] |
AHRENKIE R K. Modified Kramers-Kronig analysis of optical spectra[J]. Journal of the Optical Society of America, 1971, 61(12):1651-1655. doi: 10.1364/JOSA.61.001651
|
[67] |
LUCARINI V, SAARINEN J J, PEIPONEN K E. Multiply subtractive Kramers-Krönig relations for arbitrary-order harmonic generation susceptibilities[J]. Optics Communications, 2003, 218(4-6):409-414. doi: 10.1016/S0030-4018(03)01259-8
|
[68] |
PALMER K F, WILLIAMS M Z, BUDDE B A. Multiply subtractive Kramers-Kronig analysis of optical data[J]. Applied Optics, 1998, 37(13):2660-2673. doi: 10.1364/AO.37.002660
|
[69] |
GRANOT E, BEN-ADERET Y, STERNKLAR S. Differential multiply subtractive Kramers-Kronig relations[J]. Journal of the Optical Society of America B, 2008, 25(4):609-613. doi: 10.1364/JOSAB.25.000609
|
[70] |
BEN-ADERET Y, GRANOT E, STERNKLAR S, et al.. Spectral analysis of a one-dimensional scattering medium with the differential multiply subtractive Kramers-Kronig method[J]. Journal of the Optical Society of America B, 2009, 26(1):125-128. doi: 10.1364/JOSAB.26.000125
|
[71] |
HORSLEY S A R, ARTONI M, LA ROCCA G C. Spatial Kramers-Kronig relations and the reflection of waves[J]. Nature Photonics, 2015, 9(7):436-439. doi: 10.1038/nphoton.2015.106
|
[72] |
LONGHI S. Wave reflection in dielectric media obeying spatial Kramers-Kronig relations[J]. Europhysics Letters, 2015, 112(6):64001. doi: 10.1209/0295-5075/112/64001
|
[73] |
KOBER H. A note on Hilbert's operator[J]. Bulletin of the American Mathematical Society, 1942, 48(6):421-427. doi: 10.1090/S0002-9904-1942-07688-9
|
[74] |
LONGHI S. Bidirectional invisibility in Kramers-Kronig optical media[J]. Optics Letters, 2016, 41(16):3727-3730. doi: 10.1364/OL.41.003727
|
[75] |
PHILBIN T G. All-frequency reflectionlessness[J]. Journal of Optics, 2016, 18(1):01LT01. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=30019534296ebe105e4635bcfaa2d372
|
[76] |
KING C G, HORSLEY S A R, PHILBIN T G. Zero reflection and transmission in graded index media[J]. Journal of Optics, 2017, 19(8):085603. doi: 10.1088/2040-8986/aa7783
|
[77] |
YE D X, CAO C, ZHOU T Y, et al.. Observation of reflectionless absorption due to spatial Kramers-Kronig profile[J]. Nature Communications, 2017, 8(1):51. doi: 10.1038/s41467-017-00123-4
|
[78] |
MECOZZI A, ANTONELLI C, SHTAIF M. Kramers-Kronig coherent receiver[J]. Optica, 2016, 3(11):1220-1227. doi: 10.1364/OPTICA.3.001220
|
[79] |
ANTONELLI C, MECOZZI A, SHTAIF M. Kramers-Kronig PAM transceiver and two-sided polarization-multiplexed Kramers-Kronig transceiver[J]. Journal of Lightwave Technology, 2018, 36(2):468-475. doi: 10.1109/JLT.2018.2796306
|
[80] |
CHEN X, ANTONELLI C, CHANDRASEKHAR S, et al.. Kramers-Kronig receivers for 100-km datacenter interconnects[J]. Journal of Lightwave Technology, 2018, 36(1):79-89. doi: 10.1109/JLT.2018.2793460
|
[81] |
HOANG T M, SOWAILEM M Y S, ZHUGE Q B, et al.. Single wavelength 480 Gb/s direct detection over 80 km SSMF enabled by Stokes vector Kramers -Kronig transceiver[J]. Optics Express, 2017, 25(26):33534-33542. doi: 10.1364/OE.25.033534
|
[82] |
汪小佳, 朱仁传, 洪亮.有航速Kramers-Kronig关系及浮体运动的间接时域法[J].中国造船, 2018, 59(2):9-23. doi: 10.3969/j.issn.1000-4882.2018.02.002
WANG X J, ZHU R CH, HONG L. Kramers-Kronig relations and frequency to time-domain transformation method for time domain calculation of floating body with forward speed[J]. Shipbuilding of China, 2018, 59(2):9-23.(in Chinese) doi: 10.3969/j.issn.1000-4882.2018.02.002
|