Volume 12 Issue 1
Feb.  2019
Turn off MathJax
Article Contents
DONG Lei, LU Zhen-wu, LIU Xin-yue. Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques[J]. Chinese Optics, 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138
Citation: DONG Lei, LU Zhen-wu, LIU Xin-yue. Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques[J]. Chinese Optics, 2019, 12(1): 138-147. doi: 10.3788/CO.20191201.0138

Analysis and comparison of limit detection capabilities of three active synthetic aperture imaging techniques

doi: 10.3788/CO.20191201.0138
Funds:

National Natural Science Foundation of China 11703024

Research in Advance of Spaceflight System Department 30XXXX10201

More Information
  • Corresponding author: DONG Lei, E-mail:nodepression@126.com
  • Received Date: 17 Oct 2017
  • Rev Recd Date: 14 Dec 2017
  • Publish Date: 01 Feb 2019
  • In order to deeply study the feasibility GEO imaging techniques, this paper deeply analyzes and compares three techniques for active interferometric synthetic aperture imaging by means of sensitivity. These techniques are Fourier telescopy, imaging correlography and sheared-beam imaging. Using a SNR(signal to noise ratio) model for photomultiplier tubes and laser range equations, this paper gives a detailed analysis of the limit detection capability of each technique when SNR is 5. Through simulation, it was found that the lowest single pulse energies for Fourier telescopy, imaging correlography and sheared-beam imaging were 11.4 J, 0.73 MJ and 3.1 MJ, respectively. The conclusion is that Fourier telescopy is the best among these three imaging techniques, making it most suitable for GEO imaging in the present era.

     

  • loading
  • [1]
    LOUIS S. Estimator and signal-to-noise ratio for an integrative synthetic aperture imaging technique[J]. Applied Optics, 1991, 30(2):206-213. doi: 10.1364/AO.30.000206
    [2]
    DAVID G V, JOHN F B, LAURA U, et al.. Ground-to-space laser imaging: review 2001[C]. SPIE, 2002, 4489: 35-47.
    [3]
    GREENAWAY A H. The signal-to-noise ratio in long-baseline stellar interferometry[J]. Optica Acta, 1979, 26(9):1147-1171. doi: 10.1080/713820126
    [4]
    JAMES J B, JAMES B B. Passive imaging through the turbulent atmosphere:fundamental limits on the spatial frequency resolution of a rotational shearing interferometer[J]. J. Opt. Soc. Am., 1978, 68(1):67-77. doi: 10.1364/JOSA.68.000067
    [5]
    罗秀娟, 张羽, 孙鑫, 等.大气环境中傅立叶望远镜系统能量设计[J].光学学报, 2013, 33(8):0801004-1-8.

    LUO X J, ZHANG Y, SUN X, et al.. Energy design of Fourier telescope system in the atmospheric environment[J]. Acta Optica Sinica, 2013, 33(8):0801004-1-8.(in Chinese)
    [6]
    GAMIZ V, HOLMES R B, CZYZAK S R, et al.. GLINT: program overview and potential science objectives[C]. SPIE, 2000, 4091: 304-315.
    [7]
    于树海, 王建立, 董磊, 等.基于最小二乘法拟合估计傅立叶望远镜的缺失分量[J].光学精密工程, 2015, 23(1):282-287.

    YU SH H, WANG J L, DONG L, et al.. Estimation of missing component of Fourier telescopy based on least square fitting[J]. Opt. Precision Eng., 2015, 23(1):282-287.(in Chinese)
    [8]
    于树海, 王建立, 董磊, 等.基于非均匀周期采样的傅立叶望远镜时域信号采集方法[J].中国光学, 2013, 6(3):395-401. http://www.chineseoptics.net.cn/CN/abstract/abstract8935.shtml

    YU SH H, WANG J L, DONG L, et al.. Time region signal collecting method of Fourier telescopy based on non-uniform periodically sampling[J]. Chinese Optics, 2013, 6(3):395-401.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract8935.shtml
    [9]
    周志盛, 相里斌, 张文喜, 等.基于迭代的傅立叶望远镜图像重构方法[J].光学学报, 2014, 34(5):0511005-1-7. https://max.book118.com/html/2015/0625/19712669.shtm

    ZHOU ZH SH, XIANG L B, ZHANG W X, et al.. Image reconstruction method of Fourier telescope based on iteration[J]. Acta Optica Sinica, 2014, 34(5):0511005-1-7.(in Chinese) https://max.book118.com/html/2015/0625/19712669.shtm
    [10]
    FIENUP J R, IDELL P S. Imaging correlography with sparse arrays of detectors[J]. Opt. Eng., 1988, 27:778-784.
    [11]
    梁振宇, 樊祥, 程正东, 等.任意阶运动目标强度关联成像[J].红外与激光工程, 2017, 46(8):0824002-1-8. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201708038

    LIANG ZH Y, FAN X, CHENG ZH D, et al.. N-th order intensity correlated imaging for moving target[J]. Infrared and Laser Engineering, 2017, 46(8):0824002-1-8.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201708038
    [12]
    梅笑冬, 龚文林, 严毅, 等.可预置激光三维强度关联成像雷达实验研究[J].中国激光, 2016, 43(7):0710003-1-9.

    MEI X D, GONG W L, YAN Y, et al.. Experimental research on prebuilt three-dimensional imaging ladar[J]. Chinese Journal of Lasers, 2016, 43(7):0710003-1-9.(in Chinese)
    [13]
    HUTCHIN R A. Sheared coherent interferometric photography[C]. SPIE, 1993, 2029: 161-168.
    [14]
    陈明徕, 罗秀娟, 张羽, 等.基于全相位谱分析的剪切光束成像目标重构[J].物理学报, 2017, 66(2):024203-1-6. http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016

    CHEN M L, LUO X J, ZHANG Y, et al.. Sheared-beam imaging target reconstruction based on all-phase spectrum analysis[J]. Acta Physica Sinica, 2017, 66(2):024203-1-6.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wlxb201702016
    [15]
    HAMAMATSU PHOTONICS K K. Photomultiplier Tubes:Basics and Applications(3 edition)[M]. Tokyo:Hamamatsu Photonics Press, 2007:73-77.
    [16]
    徐正平, 许永森, 姚园, 等.凝视型激光主动成像系统性能验证[J].光学精密工程, 2017, 25(6):1441-1448. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706006

    XU ZH P, XU Y S, YAO Y, et al.. Performance verification of staring laser active imaging system[J]. Opt. Precision Eng., 2017, 25(6):1441-1448.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706006
    [17]
    李明, 薛莉, 黄晨, 等.基于有效回波概率估计空间碎片激光测距系统作用距离[J].光学精密工程, 2016, 24(2):260-267. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201602003

    LI M, XUE L, HUANG CH, et al.. Estimation of detection range for space debris laser ranging system based on efficient echo probability[J]. Opt. Precision Eng., 2016, 24(2):260-267.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201602003
    [18]
    STEVEN M S, RICHARD K, PAUL F, et al.. Sheared-beam coherent image reconstruction[C]. SPIE, 1996, 2847: 150-158.
    [19]
    饶瑞中.现代大气光学[M].北京:科学出版社, 2012:330-333.

    RAO R ZH. Modern Atmospheric Optics[M]. Beijing:Science Press, 2012:330-333.(in Chinese)
    [20]
    胡益华, 曹必松, 魏斌, 等.9.7 GHz高频窄带高温超导滤波器设计[J].低温物理学报, 2005, 27(4):371-374. doi: 10.3969/j.issn.1000-3258.2005.04.015

    HU Y H, CAO B S, WEI B, et al.. A high-frequency and narrow-band HTS filter at 9.7 GHz[J]. Chinese Journal of Low Temperature Physics, 2005, 27(4):371-374.(in Chinese) doi: 10.3969/j.issn.1000-3258.2005.04.015
    [21]
    杨丽萍, 万飞, 杨思川, 等.四硼酸锂在高频窄带滤波器上的应用探讨[J].压电与声光, 2014, 36(1):27-31. doi: 10.3969/j.issn.1004-2474.2014.01.007

    YANG L P, WAN F, YANG S CH, et al.. Discussion on application of LBO for high-frequency and Narrow-band filters[J]. Piezoelectrics & Acoustooptics, 2014, 36(1):27-31.(in Chinese) doi: 10.3969/j.issn.1004-2474.2014.01.007
    [22]
    邓克强, 邓其贤, 何玉民.掠面体波高频极窄带滤波器[J].火控雷达技术, 1986(3):40-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001388164

    DENG K Q, DENG Q X, HE Y M. High frequency extremely narrow band filter based on sweeping surface body wave[J]. Fire Control Radar Technology, 1986(3):40-43.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001388164
    [23]
    RODDIER F. Interferometric imaging in optical astronomy[J]. Physics Reports, 1988, 170(2):97-166. doi: 10.1016/0370-1573(88)90045-2
    [24]
    THOMPSON A R, JAMES M M, GEORGE W S J. Interferometry and Synthesis in Radio Astronomy[M]. Switzerland:Springer, 2016, 835.
    [25]
    STEVEN M S, RICHARD K, PAUL F, et al.. Sheared-beam coherent image reconstruction[C]. SPIE, 1996, 2847: 150-158.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article views(2465) PDF downloads(214) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return