Volume 13 Issue 3
Jun.  2020
Turn off MathJax
Article Contents
ZHU Yu-yu, XI Ya-ru, ZHANG Ya-ni, JIANG Peng, XUE Lu, XU Qiang. Numerical simulation of transmission spectra characterization of long-period fiber grating[J]. Chinese Optics, 2020, 13(3): 451-458. doi: 10.3788/CO.2019-0152
Citation: ZHU Yu-yu, XI Ya-ru, ZHANG Ya-ni, JIANG Peng, XUE Lu, XU Qiang. Numerical simulation of transmission spectra characterization of long-period fiber grating[J]. Chinese Optics, 2020, 13(3): 451-458. doi: 10.3788/CO.2019-0152

Numerical simulation of transmission spectra characterization of long-period fiber grating

doi: 10.3788/CO.2019-0152
Funds:  Supported by National Natural Science Foundation of China (No. 11647008); International Science & Technology Cooperation and Exchanges Project of Shaanxi (No. 2018KW-16); Open Research Fund of State Key Laboratory of Transient Optics and Photonics (No. SKLST201802); Key Sciences and Technology Project of Baoji City (No. 2015CXNL-1-3); Science and Technology Project of Xianyang City (No. 2018K02-60); Key Research Project of Shaanxi University of Science & Technology (No. 2018WLXY-01-01)
More Information
  • Based on the coupled-mode theory, the equation for the transmission spectrum of Long Period Fiber Gratings (LPFGs) is solved by using the transmission matrix method and the relationship between the spectral characteristics of LPFGs and grating parameters (such as grating period, writing length and the depth of refractive index modulation) is simulated. The results show that the resonant wavelength of LPFGs is red-shifted with an increase in the grating period and refractive index modulation depth, and that the resonant wavelength with higher-order mode is relatively more sensitive on the grating period. At the same time, the change in the spectral bandwidth mainly depends on the writing length of the grating. The bandwidth narrows gradually with an increase in the length of the grating and over-coupling occurs when the grating length is higher than 5.2 cm. With an increase in the refractive index modulation depth, the grating has the phenomena of incomplete coupling, complete coupling and over-coupling, and the position of the maximum resonance loss will gradually transfer to the lower-order mode. The results of this research have important referential significance for the theoretical research of LPFGs and parameter designs in practical applications.

     

  • loading
  • [1]
    ERDOGAN T. Cladding-mode resonances in short- and long-period fiber grating filters: errata[J]. Journal of the Optical Society of America A, 2000, 14(18): 1760-1773. doi: 10.1364/JOSAA.17.002113
    [2]
    石胜辉, 赵明富, 罗彬彬, 等. 扭转螺旋型力学微弯长周期光纤光栅的光谱特性[J]. 光学精密工程,2017,25(7):1771-1776.

    SHI SH H, ZHAO M F, LUO B B, et al. Spectral characteristics of helicoidal mechanically-induced long-period fiber grating[J]. Optics and Precision Engineering, 2017, 25(7): 1771-1776. (in Chinese)
    [3]
    杨颖, 顾铮. 长周期光纤光栅透射谱计算方法的比较与分析[J]. 光子学报,2012,41(7):824-830. doi: 10.3788/gzxb20124107.824

    YANG Y, GU ZH. Comparing and analysis of calculation methods of long-period fiber gratings transmission spectra[J]. Acta Photonica Sinica, 2012, 41(7): 824-830. (in Chinese) doi: 10.3788/gzxb20124107.824
    [4]
    赵明富, 韩汐, 罗彬彬, 等. 长周期光纤光栅的折射率梯度响应特性[J]. 光学精密工程,2013,21(2):316-322. doi: 10.3788/OPE.20132102.0316

    ZHAO M F, HAN X, LUO B B, et al. Response characteristics of refractive-index gradient based on long-period fiber gratings[J]. Optics and Precision Engineering, 2013, 21(2): 316-322. (in Chinese) doi: 10.3788/OPE.20132102.0316
    [5]
    曾祥楷, 饶云江. 长周期光纤光栅傅里叶模式耦合理论[J]. 物理学报,2010,59(12):8607-8614. doi: 10.7498/aps.59.8607

    ZENG X K, RAO Y J. Theory of Fourier mode coupling for long-period fiber gratings[J]. Acta Physica Sinica, 2010, 59(12): 8607-8614. (in Chinese) doi: 10.7498/aps.59.8607
    [6]
    徐新华, 崔一平. 矩形折射率调制型长周期光纤光栅传输谱的理论分析及数值计算[J]. 物理学报,2003,52(1):96-101. doi: 10.3321/j.issn:1000-3290.2003.01.019

    XU X H, CUI Y P. Theoretical analysis and numerical calculation for the transmission spectrum of long-period fiber gratings with a rectangular index modulation[J]. Acta Physica Sinica, 2003, 52(1): 96-101. (in Chinese) doi: 10.3321/j.issn:1000-3290.2003.01.019
    [7]
    吴清海, 秦子雄, 曾庆科, 等. 长周期光纤光栅透射谱仿真的新方法[J]. 广西通信技术,2007(2):23-26, 35. doi: 10.3969/j.issn.1008-3545.2007.02.006

    WU Q H, QIN Z X, ZENG Q K, et al. A new method of simulation research on the transmission spectrum of long-period fiber grating[J]. Guangxi Communication Technology, 2007(2): 23-26, 35. (in Chinese) doi: 10.3969/j.issn.1008-3545.2007.02.006
    [8]
    高敏, 葛海波, 李盼盼, 等. 不同长周期光栅的级联传输谱特性[J]. 光通信技术,2018,42(11):56-59.

    GAO M, GE H B, LI P P, et al. Cascaded transmission spectrum characteristics of different long-period fiber grating[J]. Optical Communication Technology, 2018, 42(11): 56-59. (in Chinese)
    [9]
    YANG M W, WANG D N, WANG Y, et al. Long period fiber grating formed by periodically structured microholes in all-solid photonic bandgap fiber[J]. Optics Express, 2010, 18(3): 2183-2189. doi: 10.1364/OE.18.002183
    [10]
    MIZRAHI V, SIPE J E. Optical properties of photosensitive fiber phase gratings[J]. Journal of Lightwave Technology, 1993, 11(10): 1513-1517. doi: 10.1109/50.249888
    [11]
    TAGHIPOUR A, ROSTAMI A, BAHRAMI M, et al. Comparative study between LPFG- and FBG-based bending sensors[J]. Optics Communications, 2014, 312(4): 99-105. doi: 10.1016/j.optcom.2013.09.020
    [12]
    李新碗, 杜鹏超, 叶爱伦. 长周期光纤光栅耦合特性及模拟分析[J]. 电子学报,2000,28(11):68-71. doi: 10.3321/j.issn:0372-2112.2000.11.018

    LI X W, DU P CH, YE A L. The analysis and simulation on the mode-coupling characteristics of long-period fiber grating[J]. Acta Electronica Sinica, 2000, 28(11): 68-71. (in Chinese) doi: 10.3321/j.issn:0372-2112.2000.11.018
    [13]
    CHUNG K W, YIN SH ZH. Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling[J]. Optics Letters, 2004, 29(8): 812-814. doi: 10.1364/OL.29.000812
    [14]
    WANG H Y, CHUO S M, WANG L A. Fabrication and simulation of corrugated long period microfiber gratings[J]. Proceedings of SPIE, 2011, 7753(4): 123-130. doi: 10.1117/12.886086
    [15]
    ERDOGAN T. Fiber grating spectra[J]. Journal of Lightwave Technology, 1997, 15(8): 1277-1294. doi: 10.1109/50.618322
    [16]
    何万迅, 施文康. 模式耦合理论在圆周对称长周期光纤光栅建模中的应用[J]. 光学技术,2002,28(2):155-157. doi: 10.3321/j.issn:1002-1582.2002.02.039

    HE W X, SHI W K. Application of coupled mode theory on modeling for circularly symmetric LPFG[J]. Optical Technique, 2002, 28(2): 155-157. (in Chinese) doi: 10.3321/j.issn:1002-1582.2002.02.039
    [17]
    MCCALL M. On the application of coupled mode theory for modeling fiber bragg gratings[J]. Journal of Lightwave Technology, 2000, 18(2): 236-242. doi: 10.1109/50.822798
    [18]
    欧启标, 覃溪, 张超, 等. 长周期光纤光栅折射率特性仿真的新方法[J]. 光学技术,2012,38(1):60-63. doi: 10.3788/GXJS20123801.0060

    OU Q B, QIN X, ZHANG CH, et al. A new method of simulation of LPFG refractive index characteristics[J]. Optical Technique, 2012, 38(1): 60-63. (in Chinese) doi: 10.3788/GXJS20123801.0060
    [19]
    张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒激光脉冲刻写长周期光纤光栅机理[J]. 光子学报,2018,47(1):0106003. doi: 10.3788/gzxb20184701.0106003

    ZHANG Y N, LIU S C, ZHAO Y, et al. Fabrication mechanism of long-period fiber grating based on 800 nm high intensity femto-second laser pulses[J]. Acta Photonica Sinica, 2018, 47(1): 0106003. (in Chinese) doi: 10.3788/gzxb20184701.0106003
    [20]
    张亚妮, 郗亚茹, 江鹏, 等. 飞秒激光直写长周期光纤光栅及其光谱特性[J]. 光子学报,2018,47(11):1106001. doi: 10.3788/gzxb20184711.1106001

    ZHANG Y N, XI Y R, JIANG P, et al. Fabrication of long period fibre gratings by femtosecond laser writing directly and its spectral characteristics[J]. Acta Photonica Sinica, 2018, 47(11): 1106001. (in Chinese) doi: 10.3788/gzxb20184711.1106001
    [21]
    ZHANG Y N, XI Y R, LIU S C, et al. Long-period fiber grating fabricated by 800 nm femtosecond laser pulses[J]. Proceedings of SPIE, 2018, 10697: 106974Q.
    [22]
    赵鹏, 刘云, 洪欢欢, 等. 纳米金辅助介质阻挡放电离子化质谱分析法在兽药饲料快检中的应用[J]. 分析化学,2018,46(7):1089-1094.

    ZHAO P, LIU Y, HONG H H, et al. Fast analysis of veterinary drugs in feed using gold nanoparticles-assisted dielectric barrier discharge ion source-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1089-1094. (in Chinese)
    [23]
    余登斌, 江岚, 王沛,等. 碳纳米材料修饰阳极电极对微生物燃料电池传感器水体毒性检测灵敏度的影响[J]. 分析化学,2018,46(7):1032-1038.

    YU D B, JIANG L, WANG P, et al. Effect of anode electrode modified with carbon nanomaterials of microbial fuel cell-based sensor on detection sensitivity of water toxicity[J]. Chinese Journal of Analytical Chemistry, 2018, 46(7): 1032-1038. (in Chinese)
    [24]
    贾玮, 张荣, 石琳,等. 基于质谱断裂机理的乳制品中农药非定向筛查分析方法构建[J]. 分析化学,2019,47(7):1098-1105.

    JIA W, ZHANG R, SHI L, et al. Construction of non-target screening method for pesticides in milk and dairy products based on mass spectrometry fracture mechanism[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 1098-1105. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(3214) PDF downloads(288) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return