Volume 11 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677
Citation: LI Biao, REN Yi, CHANG Ben-kang. Stability of gradient-doping GaN photocathode[J]. Chinese Optics, 2018, 11(4): 677-683. doi: 10.3788/CO.20181104.0677

Stability of gradient-doping GaN photocathode

doi: 10.3788/CO.20181104.0677

National Natural Science Foundation of Chin No.61171042

More Information
  • Corresponding author: LI Biao, E-mail:libiao2006@126.com
  • Received Date: 2017-12-27
  • Rev Recd Date: 2018-01-30
  • Publish Date: 2018-08-01
  • The GaN photocathode multi-information measurement and evaluation system is used to test the quantum efficiency of the reflective gradient-doped and uniformly doped GaN photocathode samples after activation and attenuation, and the attenuation rate test is performed. The gradient-doped sample has a smaller attenuation ratio and a slower decay rate than the uniform-doped sample within the same decay time because the gradient-doped structure can generate a series of built-in electric fields inside the emissive layer. As a result, the energy band can be continuously bent downwards, resulting in a lower surface vacuum level than that of the uniformly doped sample, and the negative electron affinity formed on the surface of the emission layer is more pronounced, resulting in easier escape of photogenerated electrons in the emission layer. The decay of the cathode quantum efficiency becomes slower, making it more stable than uniform-doped structures.
  • loading
  • [1]
    洪国彬, 杨钧杰, 卢廷昌.蓝紫光氮化镓光子晶体面射型激光器[J].中国光学, 2014, 7(4):559-571. http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml

    HONG K B, YANG CH CH, LU T CH. Blue-violet GaN-based photonic crystal surface emitting lasers[J]. Chin. Opt., 2014, 7(4):559-571.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9184.shtml
    秦华, 黄永丹, 孙建东, 等.二维电子气等离激元太赫兹波器件[J].中国光学, 2017, 10(1):51-67. http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml

    QIN H, HUANG Y D, SUN J D, et al.. Terahertz-wave devices based on plasmons in two-dimensional electron gas[J]. Chin. Opt., 2017, 10(1):51-67.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9511.shtml
    蔡丽娥, 张保平, 张江勇, 等.GaN基蓝光VCSEL的制备及光学特性[J].发光学报, 2016, 37(4):452-456. http://www.cqvip.com/QK/92489X/201604/668520133.html

    CAI L E, ZHANG B P, ZHANG J Y, et al.. Fabrication and characteristics of GaN-based blue VCSEL[J]. Chinese J. Luminescence, 2016, 37(4):452-456.(in Chinese) http://www.cqvip.com/QK/92489X/201604/668520133.html
    邹水平, 吴柏禧, 万珍平, 等.电-热应力对GaN基白光LED可靠性的影响[J].发光学报, 2016, 37(1):124-129. http://www.cqvip.com/QK/92489X/201601/667808202.html

    ZOU SH P, WU B X, WAN ZH P, et al.. Effect of current-temperature stress on the reliability of GaN LED[J]. Chinese J. Luminescence, 2016, 37(1):124-129.(in Chinese) http://www.cqvip.com/QK/92489X/201601/667808202.html
    李志全, 王聪, 李文超, 等.利用Ag/P-GaN双光栅改善LED发光特性[J].光学 精密工程, 2017, 25(5):1185-1191. http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html

    LI ZH Q, WANG C, LI W CH, et al.. Improving LED luminescence properties by using Ag/P-GaN double grating[J]. Opt. Precision Eng., 2017, 25(5):1185-1191.(in Chinese) http://wuxizazhi.cnki.net/Sub/yqyb/a/GXJM201705009.html
    王永进, 张锋华, 高绪敏, 等.面向可见光波段的非周期悬空GaN薄膜光栅[J].光学 精密工程, 2017, 25(12):3020-3026. https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc

    WANG Y J, ZHANG F H, GAO X M, et al.. Freestanding non-periodic GaN gratings in visible wavelength region[J]. Opt. Precision Eng., 2017, 25(12):3020-3026.(in Chinese) https://www.wenkuxiazai.com/word/00576a9fd5bbfd0a795673eb-1.doc
    SOMMER A H. Stability of photocathode[J]. Appl. Opt., 1973, 12(1):90-92. doi: 10.1364/AO.12.000090
    徐江涛.真空残气对GaAs阴极发射性能的影响[J].应用光学, 2003, 24(2):13-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005

    XU J T. Effect of residual gas on emission property of Gallium Arsenide cathode in vacuum[J]. J. Appl. Opt., 2003, 24(2):13-15.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx200302005
    WADA T, NITTA T, NOMURA T. Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes[J]. Jpn. J. Appl. Phys., 1990, 29(10):2087-2091. https://www.researchgate.net/profile/Shiyu_Sun4
    MACHUCA F. A Thin Film p-type GaN Photocathode: prospect for a high performance electron emitter[D]. Stanford: University Stanford, 2004.
    ZOU J J, CHANG B K. Gradient-doping negative electron affinity GaAs photocathodes[J]. Opt. Eng., 2006, 45(5):054001. doi: 10.1117/1.2205171
    YANG ZH, CHANG B K, ZOU J J. Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J]. Appl. Opt., 2007, 46(28):7035-7039. doi: 10.1364/AO.46.007035
    乔建良, 常本康, 杜晓晴, 等.反射式负电子亲和势GaN光电阴极量子效率衰减机理研究[J].物理学报, 2010, 59(4):2855-2859. doi: 10.7498/aps.59.2855

    QIAO J L, CHANG B K, DU X Q, et al.. Quantum efficiency decay mechanism for reflection mode negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2010, 59(4):2855-2859.(in Chinese) doi: 10.7498/aps.59.2855
    高频, 王晓晖, 杜玉杰, 等.NEA GaN光电阴极的制备与评估[J].红外技术, 2011, 33(6):332-335. http://www.cqvip.com/QK/92901X/201106/38270750.html

    GAO P, WANG X H, DU Y J, et al.. Preparation and evaluation of NEA GaN photocthode[J]. Infrared Technol., 2011, 33(6):332-335.(in Chinese) http://www.cqvip.com/QK/92901X/201106/38270750.html
    IWAYA M, TAKEUCHI T, YAMAGUCHI S, et al.. Reduction of etch pit density in organometallic vapor phase epitaxy-grown GaN on sapphire by insertion of a low-temperature-deposited buffer layer between high-temperature-grown GaN[J]. Jpn. J. Appl. Phys., 1998, 37:L316-L318. doi: 10.1143/JJAP.37.L316
    NAKCMURA S, MUKAI T, SENOH M, et al.. Thermal annealing effects on p-type Mg-doped GaN films[J]. Jpn. J. Appl. Phys., 1992, 31:L139-L140. doi: 10.1143/JJAP.31.L139
    MACHUCA F, LIU Z. Fabrication of group Ⅲ-Nitride photocathode having Cs activation layer: US, 0170324 A1[P]. 2006-01-01.
    TERESHCHENKO O E, SHAIBLER G, YAROSHEVICH A S, et al.. Low-temperature method of cleaning p-GaN(0001) surfaces for photoemitters with effective negative electron affinity[J]. Phys. Solid State, 2004, 46(10):1949-1953. doi: 10.1134/1.1809437
    KING S W, BARNAK J P, BREMSER M D, et al.. Cleaning of AlN and GaN surfaces[J]. J. Appl. Phys., 1998, 84(9):5248-5260. doi: 10.1063/1.368814
    乔建良, 田思, 常本康, 等.负电子亲和势GaN光电阴极激活机理研究[J].物理学报, 2009, 58(8):5847-5851. doi: 10.7498/aps.58.5847

    QIAO J L, TIAN S, CHANG B K, et al.. Activation mechanism of negative electron affinity GaN photocathode[J]. Acta Phys. Sinica, 2009, 58(8):5847-5851.(in Chinese) doi: 10.7498/aps.58.5847
    邹继军, 常本康, 杜晓晴, 等.GaAs光电阴极光谱响应曲线形状的变化[J].光谱学与光谱分析, 2007, 27(8):1465-1468. http://www.cqvip.com/QK/90993X/200708/25252972.html

    ZOU J J, CHANG B K, DU X Q, et al.. Variation of spectral response curve shape of GaAs photocathodes[J]. Spectrosc. Spectral Anal., 2007, 27(8):1465-1468.(in Chinese) http://www.cqvip.com/QK/90993X/200708/25252972.html
    NIU J, ZHANG Y J, CHANG B K, et al.. Influence of varied doping structure on photoemissive property of photocathode[J]. Chin. Phys. B, 2011, 20(4):044209. doi: 10.1088/1674-1056/20/4/044209
    张益军. 变掺杂GaAs光电阴极研制及其特性评估[D]. 南京: 南京理工大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823

    ZHANG Y J. Design and characteristic evaluation of varied doping GaAs photocathode[D]. Nanjing: Nanjing University of Science and Technology, 2012. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2275823
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (1297) PDF downloads(169) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint