Volume 11 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
XING Xiao-xue, WANG Xian-wei, QIN Hong-wu, SHANG Wei-wei, MA Yu-jing. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4): 662-668. doi: 10.3788/CO.20181104.0662
Citation: XING Xiao-xue, WANG Xian-wei, QIN Hong-wu, SHANG Wei-wei, MA Yu-jing. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chinese Optics, 2018, 11(4): 662-668. doi: 10.3788/CO.20181104.0662

CH4 detection based on near-infrared luminescence of PbSe quantum dots

doi: 10.3788/CO.20181104.0662
Funds:

National Natural Science Foundation of China No.61675086

Science and Technology Plan Project of Jilin Provincial Science and Technology Department No.2016LY402L01

More Information
  • Corresponding author: QIN Hong-wu, E-mail:qinhongwu@ccu.edu.cn
  • Received Date: 2017-11-01
  • Rev Recd Date: 2018-02-09
  • Publish Date: 2018-08-01
  • In this paper, a new type of near-infrared light source of PbSe quantum dots(QDs) is introduced. Its photoluminescence(PL) spectrum is narrow which effectively match the infrared absorption peak of targets gases. The 5.1 nm PbSe quantum dots are synthesized by using the coordination solvent method and deposited on the GaN chip(with a deposition thickness of 165.5 μm), then a photoluminescent near-infrared light source is fabricated after ultraviolet light treatment and curing. The first exciton absorption peak of the light source is located at 1 592 nm, the photoluminescence peak is located at 1 665 nm, and its emission spectrum contains the entire absorption spectrum of CH4 gas between 1 625-1 840 nm. The CH4 gas concentration detection experiment is carried out using this light source. The results show that the lowest detection limit of 100×10-6 and the detection error of 2% can be obtained. The new detection system composed of PbSe quantum dots near-infrared light source has the advantages of low power consumption, low cost and high efficiency. When it is used in gas detection, the filter can be omitted, and it has a broad application prospect in the field of infrared gas detection.
  • loading
  • [1]
    SUN L F, CHOI J J, STACHNIK D, et al.. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnol, 2012, 7(6):369-373. doi: 10.1038/nnano.2012.63
    [2]
    DAI X, ZHANG Z, JIN Y, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525):96-99. doi: 10.1038/nature13829
    [3]
    MA W, SWISHER S L, EWERS T, et al.. Photovoltaic performance of ultrasmall PbSe quantum dots[J]. ACS Nano, 2011, 5(10):8140-8147. doi: 10.1021/nn202786g
    [4]
    CAI W B, SHIN D W, CHEN K, et al.. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects[J]. Nano Lett., 2006, 6(4):669-676. doi: 10.1021/nl052405t
    [5]
    KIM G H, GARCÍA DE ARQUER F P, YOON Y J, et al.. High-efficiency colloidal quantum dot photovoltaics via robustself-assembled monolayers[J]. Nano Lett., 2015, 15(11):7691-7696. doi: 10.1021/acs.nanolett.5b03677
    [6]
    李红博, 尹坤.基于量子点的荧光型太阳能聚光器[J].中国光学, 2017, 10(5):555-567. http://www.chineseoptics.net.cn/CN/abstract/abstract9542.shtml

    LI H B, YIN K. Quantum dots based luminescent solar concentrator[J]. Chinese Optics, 2017, 10(5):555-567.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9542.shtml
    [7]
    李正顺, 岳圆圆, 张艳霞, 等.丁胺包裹的CdSe量子点敏化的TiO2纳米晶薄膜电子转移机制[J].中国光学, 2015, 8(3):428-438. http://www.chineseoptics.net.cn/CN/abstract/abstract9280.shtml

    LI ZH SH, YUE Y Y, ZHANG Y X, et al.. Electron transfer mechanism of butylamine-capped CdSe quantum dot sensitized nanocrystalline TiO2 films[J]. Chinese Optics, 2015, 8(3):428-438.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9280.shtml
    [8]
    季洪雷, 周青超, 潘俊, 等.量子点液晶显示背光技术[J].中国光学, 2017, 10(5):666-680. http://www.chineseoptics.net.cn/CN/abstract/abstract9531.shtml

    JI H L, ZHOU Q CH, PAN J, et al.. Advances and prospects in quantum dots based backlights[J]. Chinese Optics, 2017, 10(5):666-680.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9531.shtml
    [9]
    PENG X G, MANNA L, YANG W D, et al.. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404:59-61. doi: 10.1038/35003535
    [10]
    HU J T, ODOM T W, LIEBER C M, et al.. Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes[J]. Acc Chem. Res., 1999, 32(5):435-445. doi: 10.1021/ar9700365
    [11]
    YU WW, PENG X G. Formation of high-quality CdS and other Ⅱ-Ⅵ semiconductor nanocrystals in noncoordinating solvents:tunable reactivity of monomers[J]. Angew. Chem. Int. Ed., 2002, 41(13):2368-2371. doi: 10.1002/(ISSN)1521-3773
    [12]
    ZHANG Y, ICHIHASHI T, LANDREE E, et al.. Heterostructures of single-walled carbon nanotubes and carbide nanorods[J]. Science, 1999, 285(5434):1719-722. doi: 10.1126/science.285.5434.1719
    [13]
    YAN L, ZHANG Y, ZHANG T Q, et al.. Tunable near-infrared luminescence of PbSe quantum dots for multigas analysis[J] Anal. Chem., 2014, 86(22):11312-11318. doi: 10.1021/ac5030478
    [14]
    邢笑雪, 秦宏伍, 商微微.PbSe量子点荧光匹配气体吸收光谱方法研究[J].光谱学与光谱分析, 2016, 36(11):3588-3591. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201611026

    XING X X, QIN H W, SHANG W W. Research of spectrum matching method for PbSe quantum dots luminescence spectrum and gas absorption spectrum[J]. Spectroscopy and Spectral Analysis, 2016, 36(11):3588-3591.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201611026
    [15]
    YU W W, FALKNER J C, SHIH B S, et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater., 2004, 35(43):39-46. https://vdocuments.mx/documents/preparation-and-characterization-of-monodisperse-pbse-semiconductor-nanocrystals.html
    [16]
    SONG F, LI G L, SONG N, et al.. Design and implementation of differential mid-infrared carbon monoxide detector[J]. Optoelectronics Letters, 2013, 9(5):385-388. doi: 10.1007/s11801-013-3108-1
    [17]
    吕瑞红, 宋楠, 宋芳, 等.基于虚拟信号处理平台的差分式中红外甲烷检测系统[J].光电子激光, 2013, 24(7):1350-1356. http://mall.cnki.net/magazine/Article/GDZJ201307021.htm

    LV R H, SONG N, SONG F, et al.. Differental mid-infrared methane detection system based on virtual signal processing platform[J]. Journal of Optoelectronics Laser, 2013, 24(7):1350-1356.(in Chinese) http://mall.cnki.net/magazine/Article/GDZJ201307021.htm
    [18]
    逯丹凤, 李洋, 祁志美.小型水样氨氮自动光学检测装置[J].光学 精密工程, 2014, 22(10):2598-2604. http://www.eope.net/gxjmgc/CN/abstract/abstract15513.shtml

    LU D F, LI Y, QI ZH M. Compact colorimetric sensor for automatic detection of ammonia nitrogen in water[J]. Opt. Precision Eng., 2014, 22(10):2598-2604.(in Chinese) http://www.eope.net/gxjmgc/CN/abstract/abstract15513.shtml
    [19]
    ZHANG Y, WANG F, ZHAO Y, et al.. Experiment research on ellipsoidal structure methane using the absorption characteristics of 3.31μm mid-infrared spectroscopy[J]. Infrared Phys. Tech., 2012, 55:353-356. doi: 10.1016/j.infrared.2012.02.006
    [20]
    李亚萍, 张广军, 李庆波, 等.空间双光路红外CO2气体传感器及其测量模型[J].光学 精密工程, 2009, 17(1):14-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200901003

    LI Y P, ZHANG G J, LI Q B, et al.. Infrared CO2 gas sensor based on space double beams and its measurement model[J]. Opt. Precision Eng., 2009, 17(1):14-19.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200901003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views (1221) PDF downloads(159) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return