Volume 11 Issue 4
Jul.  2018
Turn off MathJax
Article Contents
ZHANG Jin-gang, XIANG LI-bin, WEN De-sheng, WANG Shu-zhen. Aberration correction technology based on chromatic aberration prior constraints[J]. Chinese Optics, 2018, 11(4): 560-567. doi: 10.3788/CO.20181104.0560
Citation: ZHANG Jin-gang, XIANG LI-bin, WEN De-sheng, WANG Shu-zhen. Aberration correction technology based on chromatic aberration prior constraints[J]. Chinese Optics, 2018, 11(4): 560-567. doi: 10.3788/CO.20181104.0560

Aberration correction technology based on chromatic aberration prior constraints

doi: 10.3788/CO.20181104.0560
Funds:

National Natural Science Foundation of China 61775219

National Natural Science Foundation of China 61771369

National Natural Science Foundation of China 61640422

National Natural Science Foundation of China 61540028

Joiny Fund for Equipment Pre-Research of the Chinese Academy of Sciences 6141A01011601

More Information
  • Corresponding author: XIANG LI-bin, E-mail:xiangli@aoe.ac.cn
  • Received Date: 2018-01-11
  • Rev Recd Date: 2018-03-13
  • Publish Date: 2018-08-01
  • A priori constraint of the chromatic aberration of "the edges of the same object should be in the same position in the three color channels" is proposed by analyzing the correlation between the three channels of the natural image edge in this paper.The priori constraint is mathematically approximated as the relative derivative of each channel.Based on this chromatic aberration prior constraint, a new aberration correction model, namely the image deconvolution model, is established, and a model solving algorithm based on ADMM is given.The experimental results show that this aberration correction technique can improve the peak SNR of image by more than 10 dB, which is much better than the current mainstream algorithms such as BM3D and YUV.Moreover, the visual image performance is greatly enhanced, thus basically meets the common optical system correction requirements for aberrations.
  • loading
  • [1]
    李思雯, 徐超, 刘广荣, 等.大气湍流模糊图像的高分辨力复原算法[J].红外与激光工程, 2013, 42(12):3486-3490. doi: 10.3969/j.issn.1007-2276.2013.12.058

    LI S W, XU CH, LIU G R, et al..High resolution restoration algorithm of atmospheric turbulence blurred image[J].Infrared and Laser Engineering, 2013, 42(12):3486-3490.(in Chinese) doi: 10.3969/j.issn.1007-2276.2013.12.058
    [2]
    TORRALBA A, OLIVA A.Statistics of natural image categories[J].Network:Computation in Neural Systems, 2003, 14:391-412. doi: 10.1088/0954-898X_14_3_302
    [3]
    LI D X, ZHAO Y, XU D.Algorithm of blur identification and image restoration based on parameter estimation[J].Infrared and Engineering, 2010, 39(1):166-172. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWYJ201001040.htm
    [4]
    LEVIN A, WEISS Y, DURAND F, et al. . Efficient marginal likelihood optimization in blind deconvolution[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE, 2011: 2657-2664.
    [5]
    MACHIKHIN A, BATSHEV V, POZHAR V.Aberration analysis of AOTF-based spectral imaging systems[J].Journal of the Optical Society of America A, 2017, 34(7):1109-1113. doi: 10.1364/JOSAA.34.001109
    [6]
    ASHKANI J, MANUCHEHR S, KNUT1 M, et al..An accelerated version of alternating direction method of multipliers for TV minimization in EIT[J].Applied Mathematical Modelling, 2016, 40(21-22):8985-9000. doi: 10.1016/j.apm.2016.05.052
    [7]
    YIN Q, GUO P, LIU H, et al..Blind deconvolution for astronomical spectrum extraction from two-dimensional multifiber spectrum images[J].Optics Express, 2017, 25(5):5133-5145. doi: 10.1364/OE.25.005133
    [8]
    CARCAMO M, ROMAN P E, CASASSUS S, et al..Multi-GPU maximum entropy image synthesis for radio astronomy[J].Astrophysics and Computing, 2017, 22:16-27. https://www.researchgate.net/publication/236658125_Current_Trends_in_Radio_Image_Synthesis
    [9]
    CHEN H, WANG Q, WANG C, et al..Image decomposition-based blind image deconvolution model by employing sparse representation[J].IET Image Processing, 2016, 10(11):908-925. doi: 10.1049/iet-ipr.2015.0734
    [10]
    MA L, ZHANG R, QU Z, et al..Blind image deconvolution using sparse and redundant representation[J].Optik, 2014, 125(23):6942-6945. doi: 10.1016/j.ijleo.2014.08.067
    [11]
    DONATELLI M, HUCKLE T, MAZZA M, et al..Image deblurring by sparsity constraint on the Fourier coefficients[J].Numerical Algorithms, 2016, 72(2):341-361. doi: 10.1007/s11075-015-0047-x
    [12]
    MCLAUGHLIN M J, LIN E U, BLASCH E, et al. . Modified deconvolution using wavelet image fusion[C]. IEEE Applied Imagery Pattern Recognition Workshop, IEEE, 2015: 4.
    [13]
    LI W L, LIU Y, YIN X Q, et al..Computational imaging through chromatic aberration corrected simple lenses[J].Journal of Modern Optics, 2017, 64(20):1-10. http://www.cs.ubc.ca/labs/imager/tr/2013/SimpleLensImaging/
    [14]
    LI W, LIU Y, YIN X, et al..A computational photography algorithm for quality enhancement of single lens imaging deblurring[J].Optik-International Journal for Light and Electron Optics, 2015, 126(21):2788-2792. doi: 10.1016/j.ijleo.2015.07.030
    [15]
    HEIDE F, ROUF M, HULLIN M B, et al..High-quality computational imaging through simple lenses[J].ACM Transactions on Graphics, 2013, 32(5):149. https://www.reddit.com/r/weirdglass/comments/5xaks5/highquality_computational_imaging_through_simple/
    [16]
    HUANG P Q, ZENG X, SUN Q, et al..Super-resolving blurry multiframe images through multiframe blind deblurring using ADMM[J].Multimedia Tools and Applications, 2017, 76(11):13563-13579. doi: 10.1007/s11042-016-3770-y
    [17]
    SIXOU B, TOMA A, DENIS L, et al..Iterative choice of the optimal regularization parameter in TV image deconvolution[J].Journal of Physics:Conference Series, 2017, 9(4):1171-1191. http://iopscience.iop.org/1742-6596/464/1/012005
    [18]
    TURNES C K, BALCAN D, ROMBERG J. Image deconvolution via superfast inversion of a class of two-level Toeplitz matrices[C]. IEEE International Conference on Image Processing, IEEE, 2013.
    [19]
    DABOV K, FOI A, KATKOVNIK V, et al..Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Trans.Image Process, 2007, 16(8):2080-2095. doi: 10.1109/TIP.2007.901238
    [20]
    CHRISTIAN J S, MICHAEL H, STEFAN H, et al. . Non-stationary correction of optical aberrations[C]. 13th IEEE International Conference on Computer Vision, Piscataway, NJ, USA: IEEE, 2011: 659-666.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views (1413) PDF downloads(191) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return