Volume 10 Issue 6
Dec.  2017
Turn off MathJax
Article Contents
LOU Yan, CHEN Chun-yi, ZHAO Yi-wu, TAO Zong-hui. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768
Citation: LOU Yan, CHEN Chun-yi, ZHAO Yi-wu, TAO Zong-hui. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. doi: 10.3788/CO.20171006.0768

Characteristics of Gaussian vortex beam in atmospheric turbulence transmission

doi: 10.3788/CO.20171006.0768
Funds:

Jilin Provincial S & T Development Project of China 20140520115JH

More Information
  • Corresponding author: LOU Yan, E-mail:louyan2008@126.com
  • Received Date: 11 Sep 2017
  • Rev Recd Date: 13 Nov 2017
  • Publish Date: 01 Dec 2017
  • In order to research the influence of Gaussian vortex beam transmission on atmospheric turbulence, the radial average power and normalized average power distribution of the Gaussian vortex orbital angular momentum(OAM) states after atmospheric turbulence as well as the intrinsic mode index, initial beam radius and turbulence intensity were theoretically analyzed. The validity of pure phase perturbation approximation was used to numerically simulate the variation of radial average power distribution of OAM mode during the transmission of Gaussian vortex beam. The transmission model was established and the atmospheric laser field transmission experiments were conducted. The simulated and measured OAM normalized average power distributions were compared. The results show that under the condition of weak turbulence, the radial average power of OAM mode changes with the increase of receiver aperture size, and tends to be stable. For the common receiver aperture, the interference with OAM mode is very serious under strong turbulence or small initial beam radius. The reliability of numerical simulation of the mode change of OAM in turbulent media is verified. The paper also verifies the reliability of numerical simulation of the mode change of OAM in turbulent media.

     

  • loading
  • [1]
    AKSENOV V P, KOLOSOV V V. Scintillations of optical vortex in randomly inhomogeneous medium[J]. Photon. Res., 2015, 3(2):44-47. doi: 10.1364/PRJ.3.000044
    [2]
    PATERSON C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication[J]. Phys. Rev. Lett., 2005, 94(15):153901. doi: 10.1103/PhysRevLett.94.153901
    [3]
    SHAPIRO J H, GUHA S, ERKMEN B I. Ultimate channel capacity of free-space optical communications[J]. J. Opt. Netw., 2005, 4(8):501-516. doi: 10.1364/JON.4.000501
    [4]
    ANGUITA J A, NEIFELD M A, VASIC B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Appl. Opt., 2008, 47(13):2414-2428. doi: 10.1364/AO.47.002414
    [5]
    WANG J, YANG J, FAZAL I M, et al.. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nat. Photon., 2012, 6(7):488-496. doi: 10.1038/nphoton.2012.138
    [6]
    REN Y, HUANG H, XIE G, et al.. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Opt. Lett., 2013, 38(20):4062-4065. doi: 10.1364/OL.38.004062
    [7]
    GIBSON G, COURTIAL J, PADGETT M J, et al.. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt. Express, 2004, 12(22):5448-5456. doi: 10.1364/OPEX.12.005448
    [8]
    KRENN M, FICKLER R, FINK M, et al.. Communication with spatial modulated light through turbulent air across Vienna[J]. New J. Phys., 2014, 16:113028. doi: 10.1088/1367-2630/16/11/113028
    [9]
    高明, 吴振森.远场光束扩展对光斑瞄准偏差影响的实验[J].光学 精密工程, 2010, 18(3):602-608. http://www.wenkuxiazai.com/doc/c8371b0552d380eb62946d71.html

    GAO M, WU ZH S. Experiments of effect of beam spreading of far-field on aiming deviation[J]. Opt. Precision Eng., 2010, 18(3):602-608.(in Chinese) http://www.wenkuxiazai.com/doc/c8371b0552d380eb62946d71.html
    [10]
    YAO A M, PADGETT M J. Orbital angular momentum:origins, behavior and applications[J]. Adv. Opt. Photon., 2011, 3(2):161-204. doi: 10.1364/AOP.3.000161
    [11]
    WANG F, CAI Y, KOROTKOVA O. Partially coherent standard and elegant Laguerre-Gaussian beams of all orders[J]. Opt. Express, 2009, 17(25):22366-22379. doi: 10.1364/OE.17.022366
    [12]
    AKSENOV V P, KANEV F Y, POGUTSA C E. Spatial coherence, mean wave tilt, and mean local wave-propagation vector of a Laguerre-Gaussian beam passing through a random phase screen[J]. Atm. Ocean. Opt., 2010, 23(5):344-352. doi: 10.1134/S1024856010050027
    [13]
    GBUR G, TYSON R K. Vortex beam propagation through atmospheric turbulence and topological charge conservation[J]. J. Opt. Soc. Am. A, 2008, 25(1):225-230. doi: 10.1364/JOSAA.25.000225
    [14]
    方艳超, 郭立红, 李岩, 等.激光对风标式激光制导炸弹干扰效能分析[J].发光学报, 2013, 34(5):656-664. http://www.doc88.com/p-706869953703.html

    FANG Y C, GUO L H, LI Y, et al.. Jamming effectiveness analysis of the weather wane-type laser-guided bombs by laser[J]. Chin. J. Lumin., 2013, 34(5):656-664.(in Chinese) http://www.doc88.com/p-706869953703.html
    [15]
    WILLNER A E, HUANG H, YAN Y, et al.. Optical communications using orbital angular momentum beams[J]. Adv. Opt. Photon., 2015, 7(1):66-106. doi: 10.1364/AOP.7.000066
    [16]
    ZHU Y, LIU X, GAO J, et al.. Probability density of the orbital angular momentum mode of Hankel-Bessel beams in an atmospheric turbulence[J]. Opt. Express, 2014, 22(7):7765-7772. doi: 10.1364/OE.22.007765
    [17]
    GOPAUL C, ANDREWS R. The effect of atmospheric turbulence on entangled orbital angular momentum states[J]. New J. Phys., 2007, 9:94. doi: 10.1088/1367-2630/9/4/094
    [18]
    TYLER G A, BOYD R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Opt. Lett., 2009, 34(2):142-144. doi: 10.1364/OL.34.000142
    [19]
    GU Y, GBUR G. Measurement of atmospheric turbulence strength by vortex beam[J]. Opt. Commun., 2010, 283(7):1209-1212. doi: 10.1016/j.optcom.2009.11.049
    [20]
    ANDREWS L C, PHILLIPS R L. Laser Beam Propagation through Random Media[M]. 2nd ed. SPIE, 2005.
    [21]
    CHARNOTSKⅡ M. Extended Huygens-Fresnel principle and optical waves propagation in turbulence:discussion[J]. Opt. Soc. Am. A., 2015, 32(7):1357-1365. doi: 10.1364/JOSAA.32.001357
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(2002) PDF downloads(781) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return