Volume 10 Issue 6
Dec.  2017
Turn off MathJax
Article Contents
XU Hong-lie, KUANG Cheng, ZHANG Le, LI Sha, WANG Shu-jun, TANG Zheng, LI Lin-na. Range limited adaptive brightness preserving multi-threshold histogram equalization algorithm[J]. Chinese Optics, 2017, 10(6): 726-736. doi: 10.3788/CO.20171006.0726
Citation: XU Hong-lie, KUANG Cheng, ZHANG Le, LI Sha, WANG Shu-jun, TANG Zheng, LI Lin-na. Range limited adaptive brightness preserving multi-threshold histogram equalization algorithm[J]. Chinese Optics, 2017, 10(6): 726-736. doi: 10.3788/CO.20171006.0726

Range limited adaptive brightness preserving multi-threshold histogram equalization algorithm

doi: 10.3788/CO.20171006.0726

Natural Science Found Project of Jiangsu Province 17KJD140002

Natural Science Project of Taihu University of Wuxi 16WUNS005

More Information
  • Corresponding author: XU Hong-lie, E-mail:xhl1192008@hotmail.com
  • Received Date: 11 Jun 2017
  • Rev Recd Date: 13 Aug 2017
  • Publish Date: 01 Dec 2017
  • In recent years, many histogram equalization algorithms have been proposed for the consumer electronics field. However, many of these algorithms are hard to realize. Even, for example, some algorithms may cause an effect on brightness saturation. Therefore, a range limited adaptive brightness preserving multi-threshold histogram equalization(RLAMHE) algorithm is presented in this paper. First, the input image is smoothed appropriately to obtain the number of its histogram peak points (N+1). Then the Otsu algorithm is extended by the N-threshold, and N segmentation thresholds of the image are obtained in this way, so that the image is segmented according to this threshold. In order to maximize the brightness of the input image, a range of the equalized image is recalculated according to the minimum Absolute Mean Brightness Error(AMBE) criterion of the input and the output image. Finally, all sub-images are equalized separately using the new equalization range. Test results show that the proposed algorithm is more efficient than other algorithms and can obtain sharper image details. Meanwhile, the overall brightness of the image is also ideal. Using this algorithm to process Lena graphs, the absolute mean luminance error is 0.416 4, which is obviously better than that obtained using RLBHE algorithm(0.629 5).


  • loading
  • [1]
    CHEN H O, NICHOLAS S P K, HAIDI I. Bi-histogram equalization with a plateau limit for digital image enhancement[J]. IEEE Trans. Consum. Electron, 2009, 55:2072-2080. doi: 10.1109/TCE.2009.5373771
    MENOTTI D, NAJMAN L, FACON J, et al.. Multi-hirtogram equalization methods for contrast enhancement and brightness preserving[J]. IEEE Trans. Consum. Electron, 2007, 53:1186-1194. doi: 10.1109/TCE.2007.4341603
    KIM Y T. Contrast enhancement using brightness preserving bi-histogram equalization[J]. IEEE Trans. Consum. Electron, 1997, 43:1-8. doi: 10.1109/30.580378
    WAN Y, CHEN Q, ZHANG B M. Image enhancement based on equal area dualistic sub-image histogram equalization method[J]. IEEE Trans. Consum. Electron, 1999, 45:68-75. doi: 10.1109/30.754419
    CHEN S D, RAMLI A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement[J]. IEEE Trans. Consum. Electron, 2003, 49:1310-1319. doi: 10.1109/TCE.2003.1261234
    SIM K S, TSO C P, TAN Y Y. Recursive sub-image histogram equalization applied to gray scale images[J]. Pattern Recognit. Lett., 2007, 28:1209-1221. http://www.sciencedirect.com/science/article/pii/S0167865507000578
    ZUO CH, CHEN Q, SUI X B. Range limited bi-histogram equalization for image contrast enhancement[J]. Optik, 2013, 124:425-431. doi: 10.1016/j.ijleo.2011.12.057
    WANG CH, YE ZH F. Brightness preserving histogram equalization with maximum entropy:a variational perspective[J]. IEEE Trans. Consum. Electron, 2005, 51:1326-1334. http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1561863
    XIU CH B, WEI SH A N. Camshift tracking with saliency histogram[J]. Optics and Precision Engineering, 2015, 23(6):1749-1757. http://www.opticsjournal.net/Abstract.htm?id=OJ1508250005958EaGdJ
    LI Y, ZHANG Y F, NIAN L, et al.. [J]. Chinese J. Liquid Crystals and Displays, 2016, 31(1):104-111.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ160322000625x5A7D0
    ZHOU Y, LI Q W, HUO G Y. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering, 2014, 22(8):2215-2222.(in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-GXJM201408032.htm
    XIAO CH M, SHI Z L, LIU Y P. Metrics of image background clutter by introducing gradient features[J]. Optics and Precision Engineering, 2015, 23(12):3472-3479.(in Chinese) http://www.opticsjournal.net/abstract.htm?id=OJ160122000089jPlSoV
    CAO J F, SHI J CH, LUO H B, et al.. Image enhancement using clustering and histogram equalization[J]. Infrared and Laser Engineering, 2012, 41(12):3436-3441.(in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HWYJ201212052.htm
    YUN H J, WU ZH Y, WANG G J, et al.. Enhancement of infrared image combined with histogram equalization and fuzzy set theory[J]. J. Computer-Aided Design & Computer Graphics, 2015, 27(8):1498-1505.(in Chinese)
    CHEN Y, ZHU M. Multiple sub-histogram equalization low light level image enhancement and realization on FPGA[J]. Chinese J. Optics, 2014, 7(2):225-233.(in Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-ZGGA201402006.htm
    CAI SH D, YANG F. Image enhancement based on histogram modification[J]. Optoeletronic Technology, 2012, 32(3):155-159.(in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDJS201203004.htm
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article views(2159) PDF downloads(500) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint